Before you begin...

- Receive a user name and temporary password for Faces scheduling
- Identify your ENGR username and Password from Systems
 - If you don’t have an ENGR account, send me the following:
 - Full name
 - Principal Investigator (PI)
 - UCR Net ID
 - Email
- Coordinate a time with the lab manager for training
- Schedule a 2 hour block on Faces for your training
Netzsch TGA Operation

I. Preparation
II. Start
III. Setup & Control
IV. New Method (no baseline measurement)
V. Opening Method
VI. ASC Manager
VII. Preparing ASC
VIII. Running Experiments
IX. Results
X. Cleanup
XI. Red Flags & Mistakes
XII. Troubleshooting
XIII. Baseline Corrections
XIV. OIT Experiments – coming soon
I. Preparation – 1/3

1. Prior to running a TGA test, it is important to perform the following checks to plan for an efficient run and avoid damage to TGA

 I. Acceptable *Calibrated Crucibles*
 a) Alumina (Al$_2$O$_3$) Crucibles – 6.8 mm diameter, 4 mm height, 85 μL

 II. Acceptable *Calibrated Gas environments*
 a) 100% Nitrogen = Purge 2: N2 20 mL/min + Protection: N2 20 mL/min

 III. Acceptable *Calibrated Heating Rates*
 a) 5 K/min, 10 K/min, 20 K/min, <see Lab Manager for different rates>

2. Sign in on the *Sign-In Sheet*

3. Prepare your *EMPTY Crucibles* first
 BUT DO NOT PLACE SAMPLES INTO CRUCIBLES YET!
II. Start – 1/2

1. Click *SmartMode Measurement* to start TGA measurement program

2. If asked if you want to start *Setpoint* now, confirm and click *Yes*

3. It’s **IMPORTANT** to check that the *Setpoint* is always **ON** when not actively running a test (*Setpoint* protects TGA!)

4. Confirm that either *IDLE 25 °C* or *ECO 25 °C* is shown under *Setpoint*
II. Start – 2/2

5. Click on **Setpoint**

6. Confirm that the following settings for **Idle mode** and **Eco mode** match what is shown on the right

7. If they values are the same, proceed to **III. Setup & Control**

8. If the values are different, proceed to change them back to what is shown on the right and click **Apply**
III. Setup & Control – 1/3

1. Click on Setup & Control

2. Click on Signals to activate the pop-up window showing the Temperature and Gas Flow signals

3. Click on ASC Manual Control to bring up the menu to control the Auto Sample Controller
III. Setup & Control – 2/3

4. Review the different commands available below

Condition: **No sample in the furnace**

- **Insert sample from position**: Select sample from position in dropdown to insert into furnace

Condition: **Sample in the furnace**

- **Clear the “Sample In” flag**: ONLY use this if there is NO sample in furnace, to correct this “error”

- **Remove sample from the furnace**: Use this to remove the current sample from the furnace and place back into original sample position
III. Setup & Control – 3/3

4. Review the different commands available below

Condition: **Furnace is closed**

- **Open the furnace**: Click to open the furnace

Condition: **Furnace is open**

- **Close the furnace**: Click to close the furnace
IV. New Method – 1/8

1. Click on **New** next to **User Methods**

2. Confirm settings below are accurate or acceptable:

3. Sample carrier = TG 209F1 std (Al2O3 support) TC: P (-200...1200 °C)

4. Crucible = Al2O3 (... 1700 °C)

5. TG BeFlat support =
 - **ON** if baseline correction is to be handled by Netzsch software
 - **OFF** if baseline correction will be determined from an additional “baseline run”

6. Super-Res = **OFF**

7. Click **Modify start criteria**
IV. New Method – 2/8

8. Confirm the following **Start Criteria** default settings are appropriate:

 - Preheating rate = 30 K/min
 - Max. equilibrium time after preheating = 20 min
 - Precooling rate = 50 K/min
 - Max. equilibrium time after precooling = 30 min
 - Temperature stability threshold = 7.5 K
 - Activate check is checked off
 - Sample temperature stability rate = 0.1 K/min
 - TG signal stability rate = 0.10 mg/min
 - Start delay after stability = 30 sec

9. Click **OK** to accept settings

10. Click **Forward ->** to advance
IV. New Method – 2/8

11. Select the desired **Method** type:

Sample - Single experiment with a sample inside crucible (Default)

Correction + sample - Baseline correction experiments with empty crucible **BEFORE** single experiment with sample inside crucible – recommend if results are critical

12. Click **Forward** -> to advance
IV. New Method – 3/8

13. It’s IMPORTANT to check off:
 - **STC = Sample Temp. Controller**
 - **Purge 2 MFC = Nitrogen**
 - **Protective MFC = Nitrogen**

14. Enter in desired gas flowrates:
 - (Default) Purge 2 Gas: **50 mL/min N₂**
 - (Default) Protective: **10 mL/min N₂**

 Protective must always ≥ 10 mL/min

15. Build **Temperature Program** with desired **Step Category**

16. Input parameters for desired **Category**

17. Click **Add** to insert desired **Step Category**
IV. New Method – 4/8

18. Add **Initial** step
 a) Input Start temperature
 Recommended temp = **25 – 30 °C**
 b) Check Use AUTOVAC Controller if you want to remove residual oxygen from chamber

19. Add **Dynamic** step
 a) Input End temperature
 b) Input Heating Rate or Cooling Rate
 Note: Heating Rate MUST be equal to calibrated rates
 a) Input Acquisition rate
 (default values will be automatically inserted)

20. Add **Isothermal** step
 a) Input Isothermal time
 b) Input Acquisition rate
 (default values will be automatically inserted)
IV. New Method – 5/8

21. Add *Final* step
 a) Input Emergency Reset Temp
 (default values will be automatically inserted)

For **NEW USERS AND TRAINING PURPOSES ONLY!**

Go ahead and create the new method below with the following temperature profile

![Temperature profile diagram]

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 °C</td>
<td>11 min</td>
</tr>
<tr>
<td>250 °C</td>
<td>4 min</td>
</tr>
<tr>
<td>30 °C</td>
<td>> 11 min</td>
</tr>
</tbody>
</table>

Diagram shows:
- Increase from 30 °C to 250 °C at 20 °C/min for 4 minutes.
- Decrease from 250 °C back to 30 °C at 20 °C/min.
IV. New Method – 6/8

22. Your desired **Temperature Program** details can be reviewed in table.

23. Modify individual steps with **Update Current Step** or add new steps by **Insert Dynamic Step, Insert Isothermal Step**, or remove unwanted steps with **Delete Current Step**.

24. Click **Forward ->** to advance.
IV. New Method – 7/8

25. Check *Will be used* for *Temperature calibration*

26. Select correct *Calibration File*, checking that the following are correct:

- **Crucible:** Al2O3
- **Gas:** NITROGEN
- **Temp Range:** 0°C ... 1175 °C
- **Heating rate:** 5, 10, or 20 K/min
IV. New Method – 8/8

27. Click **Forward ->** to advance

28. Click **Save As...** to save Method into desired folder under **Methods**

29. Create a **New Folder** with your user name if you are a new user

30. Click **Save**
V. Opening Method – 1/3

1. Click **User Methods** if desired method already exists

2. Select desired method under Methods Folder:
 C:\Netzsch\Proteus70\Methods" "YOUR FOLDER"

3. Enter **Required Information** such as:

 - **Sample ID**
 - **Sample Name**
 - **File Name**

4. Enter **Operator Name** with your **User Name** for reference

5. Click on **Folder Icon** to store data in your designated folder (**IMPORTANT**)

6. Choose your **User Data Folder** or create **New Folder**
V. Opening Method – 2/3

7. Select **Autosampler Position** for your sample

8. Select type of **Sample Crucible**: (Default = Al2O3 1700 °C)

9. Select when your **Sample Mass** is weighed: **Just before measurement** (default)

10. Review that the following are correct for your desired **Method**:

 - **Calibration Info**
 - Temperature calibration: <0 °C... 1175 °C>, Crucible: Al2O3, Gas: NITROGEN, TG BeFlat will be used

 - **Gases Info**
 - Purge 1 MFC Gas does not matter
 - Purge 2 MFC NITROGEN flow: 50 ml/min
 - Protective MFC NITROGEN flow: 10 ml/min

 - **Start Criteria**
 - Sample temperature stability threshold: 7.5 K
 - Sample temperature stability rate: 4 K/min
 - Start delay after stability: 00:00:30 hh:mm:ss
V. Opening Method – 3/3

11. Review that the **Temperature Program** is correct for your **Method**:

12. If everything is correct, proceed to Add Method to the ASC queue by clicking **Add to ASC** at the bottom.
VI. ASC Manager – 1/2

1. Click on **ASC Manager** and **Switch ON** if not already ON

2. Confirm **Crucible insertion temperature threshold** (Default = 5 °C)

3. Confirm **Max removal temperature** of crucible (Default = 100 °C)

4. Pick **Final removal** action for your last sample: (Default = **Remove Crucible**)

5. Pick Stability criteria before experiment starts: (Default: **Time only; 1 min**)

6. Confirm **Alternative weighing temperatures** (Default = 25 °C)

7. Confirm **Insertion temperature threshold** (Default = 10 °K)
VI. ASC Manager – 2/2

8. Click on **Sample Tray** tab under **ASC Manager** to review the Positions and status

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined</td>
<td></td>
</tr>
<tr>
<td>Done</td>
<td></td>
</tr>
<tr>
<td>Done (analysis failed)</td>
<td></td>
</tr>
<tr>
<td>Failed</td>
<td></td>
</tr>
<tr>
<td>Measurement Active</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td></td>
</tr>
</tbody>
</table>

9. Click on **Execution list** tab to review the order of experiments scheduled

10. Click **Sample Tray State** to review details of experiments scheduled

<table>
<thead>
<tr>
<th>Position</th>
<th>Sample ID</th>
<th>Sample Name</th>
<th>Measurement Source</th>
<th>File Name</th>
<th>Crucible</th>
<th>Crucible Mass [mg]</th>
<th>Sample State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Drierite</td>
<td>Drierite</td>
<td>Drierite_Al2O3_20K_N2 30 min.ngb-s-tg</td>
<td>Drierite 2018 03 09.ngb-st9</td>
<td>Al2O3</td>
<td>by intl. binc.</td>
<td>Later</td>
</tr>
</tbody>
</table>
VII. Preparing ASC – 1/1

1. Clean empty Alumina crucible with appropriate solvent
2. Blow dry with the provided air gun
3. Identify which position(s) you want your samples to have in ASC tray (Position 0 -> 31, 32 -> 63)
4. With the **FURNACE CLOSED**, you may blow away any dust on the gripper and ASC tray using the provided air gun
VIII. Running Experiments – 1/5

1. Review **ASC Manager** settings and confirm all is correct

2. Ensure that ALL crucibles to be run **ARE EMPTY!**

3. Click **Weigh crucibles** to have the ASC weigh **ALL EMPTY CRUCIBLES NOW**

4. Proceed to review the notes described here **IMPORTANT!**

 Measurements: 0 ready for execution. Positions: 1 with not yet measured crucible mass

 Sample 0: Measuring Crucible Mass...
 The first run for crucible mass determination needs operator to check sample status! If necessary remove it or ‘Clear’ corresponding ‘Flag’.
 When ready press OK to continue...

5. Check if the conditions of the furnace are correct **BEFORE** proceeding

 E.g. “Not correct sample in the furnace. Remove it first”

 Things to consider:
 - Is the furnace open or closed?
 - Are the crucibles ALL empty?
 - Is there a sample inside furnace?
VIII. Running Experiments – 2/5

6. Correct **ALL** issues before proceeding using the various **buttons** on the left
 - Click to “open” or “close” furnace to check what is inside...
 - Click **ONLY IF** there is **NO** sample in the furnace
 - Click to “remove” the current sample

7. After all flags and conditions are corrected, click **OK** to begin experiments

8. Follow any instructions or prompts that appear

9. A prompt will appear when **Empty Crucible Weighing** is completed, click **OK**
VIII. Running Experiments – 3/5

10. Proceed to **FILL IN YOUR SAMPLES** into the **EMPTY CRUCIBLES** now

11. Click **Start** at bottom of screen when ready to begin experiments

12. Proceed to review the notes described here **IMPORTANT!**

 Measurements: 0 ready for execution. Positions: 0 with not yet measured crucible mass
 Measurement - Method 'Drierite_Al2O3_20K_N2 30 min.ngb-s-tg' Measurement ASC Operation: Sample 0
 The first run needs operator to check sample status! If necessary remove it or 'Clear' corresponding 'Flag'.
 When ready press OK to continue...

13. Check if the conditions of the furnace are correct **BEFORE** proceeding

 E.g. “Not correct sample in the furnace. Remove it first”

 Things to consider:
 - Is the furnace open or closed?
 - Are the samples insides the crucibles now?
 - Is there a sample inside furnace?
14. Correct **ALL** issues before proceeding using the various **buttons** on the left
 - Click to “open” or “close” furnace to check what is inside...
 - Click **ONLY IF** there is **NO** sample in the furnace
 - Click to “remove” the current sample

15. After all flags and conditions are corrected, click **OK** to begin experiments

16. Follow any instructions or prompts that appear
17. TGA will now begin to preheat/precool to target Initial temperature

18. Program will automatically **Start** when **Start Criteria** conditions have been met

19. The **Estimated time** for all experiments are shown here

20. The **current temperature** and **segment action** is shown here

21. Active measurement can be shown here

22. Remaining **segment time** and **completion %** is shown here
IX. Results – 1/1

1. Click **ASC Manager**, and completed experiments will be updated with **Green** color code and completion date and time.

 ![ASC Manager](image1)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Sample Tray</th>
<th>Execution list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Sample name</td>
<td>Drierite</td>
</tr>
<tr>
<td>Sample</td>
<td>Sample ID</td>
<td>Drierite</td>
</tr>
<tr>
<td>Crucible</td>
<td>Analysis</td>
<td>Drierite</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Method</td>
</tr>
<tr>
<td>26.3575 mg</td>
<td>Drierite_Ai2O3_20K_N2 30 min.ngb-s-tg</td>
<td></td>
</tr>
<tr>
<td>139.0119 mg</td>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/9/2018 12:05:21 PM</td>
<td></td>
</tr>
</tbody>
</table>

2. Click **Measurement**, to show the results.

 ![Measurement](image2)
X. Clean Up – 1/1

1. After experiment(s), TGA should cool itself down to 25°C via *Idle Mode* or *Eco Mode* at top of the screen

2. If *Idle Mode* or *Eco Mode* is not activated, proceed to turn back on *Setpoint* first

3. Click on *Setup & Control*

4. Click on *ASC Manual Control*

5. Check that the following are true, else correct:
 - *No Sample*
 - *Furnace is Closed*

6. When TGA temperature reaches $25 \pm 5 \degree C$, click the X to close the software

7. Confirm that you wish to *keep the Setpoint ON* after you close software

8. **Log out** of your ENGR account

9. Clean up the lab bench and place all items back in their respective drawers

10. Sign out on the *Sign-In Sheet* before leaving
XI. Red Flags & Mistakes – 1/2

1. DO NOT ADJUST THE REGULATOR AS THIS MAY DAMAGE MASS FLOW CONTROLLERS $$$

2. Check if the Tank 1 or 2 N_2 pressure is at least 200 psi, else contact Lab Manager to replace tank
XI. Red Flags & Mistakes – 2/2

3. Remove any trace of sample on outside and underneath crucible, as it will contaminate the TGA thermocouple $$$

4. Avoid over-filling the crucible in case the sample boils and bubbles over contaminating TGA thermocouple $$$

5. If ASC sample changer makes a noise while switching samples, report to Lab Manager immediately!

TGA thermocouple
XII. Baseline Corrections – 1/6

The following are modifications to perform a baseline correction:

1. Click on New next to User Methods

2. Everything else is kept the same as before except...

3. TG BeFlat support = ON if baseline correction will be determined from an additional “baseline run”

4. Click Forward -> to advance
5. Select the Method type = **Correction + sample**

6. Click **Forward ->** to advance

7. Complete the same **Temperature Program** as before...

8. Click **Forward ->** to advance

9. Select the same **Temperature calibration** as before...

10. Click **Forward ->** to advance

11. Proceed to **Save** the file as before...
XII. Baseline Corrections – 3/6

12. Click **User Methods** and select your **Correction + sample** method

13. You will have to perform a baseline measurement first (unless you have already ran it)

14. Select the position of your **Empty Crucible**

15. Add to ASC at the bottom
XII. Baseline Corrections – 4/6

16. Ensure your next measurement is a **Baseline measurement**

17. Click **Weigh crucibles** to have the ASC weigh **ALL EMPTY CRUCIBLES NOW**

18. Proceed to review the notes and correct all issues as before... Click **OK**

19. After the Empty Crucible is weighed, click **Start** to perform the **Baseline measurement**...
20. Click *User Methods* again

21. You can now create a *File Name* for your sample

22. Notice that *Measure baseline + sample* is now available

23. The new sample position is also updated to the next position automatically

24. Add to ASC at the bottom
XII. Baseline Corrections – 6/6

25. Ensure your next measurement is a **sample measurement**

26. Click **Weigh crucibles** to have the ASC weigh **ALL EMPTY CRUCIBLES NOW**

27. Proceed to review the notes and correct all issues as before... Click **OK**

28. After the Empty Crucible is weighed, click **Start** to perform the **sample measurement**...
1. If the ASC sample changer fails to place your crucible back to the tray when experiment is completed, perform the following:

 a) Select “Stop ASC Sample Tray run”
 b) Click OK
 c) Press Stop at top of TGA
 d) Press Init at top of TGA
 e) The ASC gripper will now drop your crucible
 f) CAREFULLY grab your crucible with tweezers underneath gripper and place it back in your tray
 g) Avoid spilling sample while moving your crucible
 h) Continue with experiments