Before you begin...

- Complete the required safety training modules on UC Learning
  - Laboratory Safety Orientation (Fundamentals) 2013
  - Hazardous Waste Management
  - X-Ray Safety
  - Compressed Gas Safety
- Submit a copy of your Training Transcript to Lab Manager
- Review the MSE XRD Policies and Regulations
- Fill out the XRD FAU Authorization Form with PI signature
- Receive a user name and temporary password for Faces scheduling
- Arrange a time for XRD training with Lab Manager
- Schedule a 2 hour block on Faces for your training
- Receive a Data Collector password
XRD Operation

I. Initiate Software
II. Sample Preparation
III. Membrane Holders
IV. Irregular Holders
V. Round Holders
VI. Sample Loading
VII. XRD Cabinet
VIII. X-Ray Settings
IX. New Measurement Program
X. Editing Measurement Program
XI. Start Measurement
XII. Data Viewing and Exporting
XIII. Data Analysis
XIV. Sample Unloading
XV. Cleanup
XVI. Troubleshoot
1. Record your time-in on the sign-in sheet

2. Double left-click on the **Data Collector icon**

3. Enter User Login = `<Faces Username>` and Data Collector Password = `<Given by Lab Manager>` and click on **OK**

4. Select **Instrument** → **Connect**

5. Select **Reflection-Transmission Spinner** and click **OK**

6. A dialogue box will appear, just click **OK**
II. Sample Preparation – 1/2

1. The sample holder and preparation will vary depending on your sample

2. Three types of sample holders are available for use are located in the storage container

3. **CLEAN UP AFTER EACH USE AND WIPE DOWN!**

<table>
<thead>
<tr>
<th>Membrane A</th>
<th>Membrane B</th>
<th>Membrane C</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Membrane A" /></td>
<td><img src="image2" alt="Membrane B" /></td>
<td><img src="image3" alt="Membrane C" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Irregular</th>
<th>Miscellaneous Tools</th>
<th>Press</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image4" alt="Irregular" /></td>
<td>Tweezers Scissors</td>
<td><img src="image5" alt="Press" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Round A</th>
<th>Round B</th>
<th>Round C</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image6" alt="Round A" /></td>
<td><img src="image7" alt="Round B" /></td>
<td><img src="image8" alt="Round C" /></td>
</tr>
</tbody>
</table>
II. Sample Preparation – 2/2

4. It is important to always have the top of your sample at the **SAME** height as the top of your sample holder (no exception!)

5. If your sample is not at the same height as your sample holder, the peaks obtained will be incorrectly shifted away from correct positions!

- *Irregular*
- *Membrane*
- *Round*
III. Membrane Holders – 1/1

1. This holder is designed for mounting:
   • dust filters
   • sample mounting plates
   • metal plates
   • pressed pellets
   • silicon substrates

2. Requires a support plate (Diameter = 32 mm)
   • Aluminum support provided (will have background Al peaks)
   • Recommend Si Zero Background Plate
     • These need to be provided by users

MTI Corp: **Zero Diffraction Plate 32 mm Dia. x 2.0 mm t, Si Crystal for XRD sample ($150)**

MTI Corp: **Zero Diffraction Plate with Cavity for XRD sample: 32 Dia x 2.0 t mm with Cavity 10 ID x 0.2 mm, Si Crystal ($199)**

Warning: X-ray beam shall be 5 mm dia or less (current installed beam mask is 10 mm) and hit in the center of sample when you use cavity zero diffraction plate! Otherwise the edge may result in a peak. USE AT YOUR OWN RISK!
IV. Irregular Holders – 1/1

1. This holder can be used to analyze solid samples with:
   • Maximum diameter = 45 mm
   • Maximum thickness = 6.5 mm

2. The sample can be mounted with clay available from Storehouse:
   • Storehouse Description: SARGENT ART 22-4096 1LB MODELING CLAY, WHITE (Stock #: 48702-108)

3. Recommend using a glass slide or Si zero background plate as support for your sample on top of clay

MTI Corp: Zero Diffraction Plate 32 mm Dia. x 2.0 mm t, Si Crystal for XRD sample ($150)

MTI Corp: Zero Diffraction Plate with Cavity for XRD sample: 32 Dia x 2.0 t mm with Cavity 10 ID x 0.2 mm, Si Crystal ($199)

Warning: X-ray beam shall be 5 mm dia or less (current installed beam mask is 10 mm) and hit in the center of sample when you use cavity zero diffraction plate! Otherwise the edge may result in a peak. USE AT YOUR OWN RISK!
1. Assemble the items for powder samples (user provides razor and brush)

   **REMEMBER TO CLEAN ALL SURFACES FIRST BEFORE USING!**

2. Invert A to get A*. Place on top of C and push the release to have it sit into place.

3. Spread the powder into the cavity using a spatula but do not pack or compress.

4. Press powder with Aluminum press
5. Remove excess powder with a straight edge or side of microscope slide

**DO NOT SCRATCH TOP SURFACE!**

6. Clean mating surfaces with small brush or provided kim wipe

7. Invert B to get B* and snap on top of A*

8. Flip entire assembly

9. Push the release to remove the sample holder (A + B) from C

10. The surface of your sample should be smooth via back-filling approach
VI. Sample Loading – 1/4

1. Double-click on “Lift = Up”

2. Uncheck the “Lift Up” option and click Apply

3. The stage will now drop down
VI. Sample Loading – 2/4

4. Press “UNLOCK DOORS” on cabinet

5. Open doors by pulling on the handles at the ends for better leverage

6. Inspect and check if desired slits are installed
   - **Standard Slits** are default:
     - Inc Div ½°
     - Inc Ant 1°
     - Dif Ant P8
VI. Sample Loading – 3/4

7. Inspect **Stage** for any residual sample left stuck on **3 Spinner Bearings** from previous user

8. Take **Kimwipe** with **IPA** and carefully wipe all **3 Spinner Bearings**

9. Use fresh area on **Kimwipe** to remove residual sample

10. Fold, and use fresh area of **Kimwipe** to wipe down the base of the **Stage**

11. If necessary, use provided **Air Duster** to dry and remove any remaining dust on **Stage**
VI. Sample Loading – 4/4

12. Carefully insert *Sample Holder* into *Stage*

13. Confirm *Sample Holder* is properly seated into *Stage*

14. Close doors of cabinet

15. **Check** the “Lift Up” option and click **Apply**

16. Click **OK**
VII. XRD Cabinet – 1/5

1. Always remember to check 3 indicators that XRD is **OK**
   - **White Power Light** is On
   - **X-Rays On Light** is On
   - **X-Ray** settings are **45 kV** and **20 mA**

Note: If above 3 indicators are missing, contact Lab Manager
VII. XRD Cabinet – 2/5

- 10 mm Beam Mask
- Ni Beta Filter
- Soller Slit
- Cu X-Ray Tube
- Detector
- Stage
- Slits Storage Box
- Incident Divergent Slit
- Incident Anti-scatter Slit
- Diffracted Anti-scatter Slit
The following table describes the components for the Incident Beam Side.

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Function or Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soller Slit</td>
<td>Prevents axial divergence and improves peak shape and symmetry</td>
</tr>
<tr>
<td>Divergence Slit</td>
<td>Controls the irradiated length of the X-Ray beam on the sample. Slit size depends on sample size and starting scan angle.</td>
</tr>
<tr>
<td>Incident Anti-scatter Slit</td>
<td>Reduces X-Ray beam scatter and reduces background. Typically double the selection of the divergent slit.</td>
</tr>
<tr>
<td>Beam Mask (not pictured)</td>
<td>Controls axial width of the X-Ray beam. Match to sample size.</td>
</tr>
</tbody>
</table>
**VII. XRD Cabinet – 4/5**

The following table describes the components for the **Diffracted Beam Side**

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Function or Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiving Slit</td>
<td>Controls the resolution of the instrument, common setting is 0.1 mm.</td>
</tr>
<tr>
<td>Soller Slit</td>
<td>Match with incident selection, typically 0.04 radians.</td>
</tr>
<tr>
<td>Diffracted Anti-scatter Slit</td>
<td>Match to the selection of the Divergent Slit.</td>
</tr>
<tr>
<td>Beta-filter</td>
<td>Used to remove beta radiation.</td>
</tr>
<tr>
<td>Detector</td>
<td>PIXcel 1D</td>
</tr>
</tbody>
</table>
## VII. XRD Cabinet – 5/5

Standard Slit Configuration = 1/2°, 1°, 8 mm

<table>
<thead>
<tr>
<th>Slit Configurations</th>
<th>Incident Beam Side</th>
<th>Diffracted Beam Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incident Divergence</td>
<td>Incident Anti-scatter</td>
<td>Diffracted Anti-scatter</td>
</tr>
<tr>
<td>ID 4°</td>
<td>IA 8°</td>
<td>P15.4</td>
</tr>
<tr>
<td>ID 2°</td>
<td>IA 4°</td>
<td>P11.2</td>
</tr>
<tr>
<td>ID 1°</td>
<td>IA 2°</td>
<td>P9.1</td>
</tr>
<tr>
<td>ID 1/2°</td>
<td>IA 1°</td>
<td>P8.0</td>
</tr>
<tr>
<td>ID 1/4°</td>
<td>IA 1/2°</td>
<td>P7.5</td>
</tr>
<tr>
<td>ID 1/8°</td>
<td>IA 1/4°</td>
<td>P7.5</td>
</tr>
</tbody>
</table>

Choose smaller slit sizes for removing background intensity at low angles

Effects of Low Scan Angles:

**Irradiated Sample Length X vs. \(\theta\)**

(Ex: \(\theta\) = 20° with ID ½° => X = 12 mm)
VIII. X-Ray Settings – 1/1

1. Double-click on the “Current = 20 mA”

2. Tension should be kept at 45 kV
   - Current = 20 mA when not in use
   - Current = 40 mA for experiments

3. Change current to 40 mA for actual experiments

4. Click Apply, then OK
**IX. New Measurement Program – 1/7**

Note: **SKIP** to **X. Editing Measurement Program** if you already have a program

1. Click **File** and choose **New Program** to create a new program (required for training)

2. Choose **Absolute Scan**, click **OK**

3. Confirm **Reflection-transmission spinner** and **Gonio** are selected

4. Choose **Continuous**

5. Click **Settings**
6. Click **Movement**
   - Set to **Spinning Enabled** (recommended)
     - Set **Revolution Time = 2 seconds**
   - Set to **Not moving** if homogeneity is not an issue but sample ejection is

7. The default settings show “**Actual**” (meaningless) for all entries
8. Set the following *Incident beam path* entries as follows:

- **PreFIX module:** *Fixed divergence slit with anti-scatter slit*
- **Soller slit:** *Soller slits 0.04 rad*
- **Mask:** *Fixed incident beam mask 10 mm*
- **Filter:** *None*
- **Beam attenuator:** *None*
- **Divergence slit:** *Enter what you’re using*; if *Standard Slits* then *Fixed slit 1/2°*
- **Anti-scatter slit:** *Enter what you’re using*; if *Standard Slits* then *Fixed slit 1°*
9. Repeat for the **Diffracted beam path** entries as follows:

- **PreFIX module:** *PIXcel with fixed anti-scatter slit*
- **Filter:** *Large beta-filter Nickel*
- **Soller slit:** *Large soller slits 0.04 rad*
- **Detector:** *PIXcel1D detector[1]*
- **Beam attenuator:** *None*
- **Receiving slit:** *None*
- **Anti-scatter slit:** *<Enter what you’re using>; if Standard Slits then AS slit 8.0mm (PIXcel)*
IX. New Measurement Program – 5/7

10. Confirm the settings

YOU CONTROL STAGE MOVEMENT CHOICE

VALUES WILL CHANGE DEPENDING ON ACTUAL SLITS USED

11. Click OK
IX. New Measurement Program – 6/7

12. Click **Description** and **Comment** tabs to enter information if desired

13. Set **Start Angle**, (eg. 10°)

14. Set **End Angle**, (eg. 80°)

15. Set **Step Size**, (eg. 0.1°)
   - decrease to enhance *resolution*

16. Set **Time Per Step**, (eg. 30 sec)
   - increase to enhance *signal/noise*

17. The **Total Time** (*h:m:s*) for the scan will automatically update
IX. New Measurement Program – 7/7

18. Click the **Close X** to close the window

19. Choose to **SAVE** your program

20. Select your `<PI’S NAME>` folder

21. Name your **Measurement Program** file

22. Default unsorted folder is “C:\PANalytical\Data Collector\Programs”

23. Continue to **XI. Start Measurement** and **SKIP X. Edit Measurement Program**
X. Editing Measurement Program – 1/1

The following steps are for **EDITING** existing program you already created only!

**SKIP** to **XI. Start Measurement** if you don’t need to edit your program

1. Click *File* and choose *Open Program*
2. Click *Browse* and find program in <PI’S NAME> folder in "C:\PANalytical\Data Collector\Programs"
3. Click *Open*
4. Modify desired parameters
5. Click *Close X* when done
6. Choose to **SAVE** your program
XI. Start Measurement – 1/3

1. Select **Measure -> Program**

2. Click **Browse**

3. Default location is “C:\PANalytical\Data Collector\Programs”

4. Find your program in **<PI’S NAME>** folder, and click **Open**
XI. Start Measurement – 2/3

5. Click icon to change file location
6. Default is unsorted in “C:\XRD Data”
7. Select your <PI'S NAME> folder
8. Select your Folder for this scan
9. Enter a Name for your scan
10. Confirm correct File Folder location
11. Enter a Comment, Sample ID, Sample name, or Username if desired
12. Clicking OK will start your scan!
13. If message appears, perform the actions and click on OK

NOTE: THE MESSAGE SHOULD ONLY BE ABOUT CHECKING THAT THE COMBINATION OF SLITS YOU HAVE INDICATED IN YOUR PROGRAM ARE INSTALLED
XI. Start Measurement – 3/3

14. The scan will initiate

15. Scale changes as the measurement proceeds

16. Scan is complete when “No program executing” is shown

17. Once scan is complete, click the **Close X** to close the scan window

18. **DO NOT CLOSE THE DATACOLLECTOR WINDOW**
II. Data Viewing and Exporting – 1/1

1. Double-click **Data Viewer icon**

2. Click **File -> Open**

3. Find your file in “C:\XRD Data\PI’S NAME”

4. Click **OK** to view your scan

5. To export your data for plotting in Excel, click **File -> Convert**

6. Check **“Comma separated file (*.csv)”** and uncheck everything else

7. Click **Convert**

8. A **.CSV** file will now be present in the folder you specified
NOTE: High Score can only be used on “High Score” computer outside

1. If you plan on using **High Score**, transfer your files directly to computer outside by transferring them to the “Z” drive directory (computers are networked) or use a flash drive

2. Refer to “**Introduction to PANalytical X’Pert HighScore Plus v3.0**” guide by Scott A. Speakman available on desktop of “High Score” computer

3. Guide is also available on MSE XRD website under Useful Documentation:

   http://www.mse.ucr.edu/facilities_xrd.html
XIV. Sample Unloading – 1/1

1. Double-click on “Lift = UP”

2. Uncheck the “Lift Up” option and click Apply

3. Press “Unlock Doors” on cabinet

4. Open doors and remove sample holder from stage

5. Carefully wipe down all 3 Spinner Bearings

6. Close doors

7. Check the “Lift Up” option and click Apply, then OK
XV. Cleanup – 1/1

1. Double-click on the “Current = 40 mA”
2. Change current back to 20 mA, click OK
3. Select Instrument → Disconnect, click OK
4. Select File → Exit to log out
5. CLEAN THE SAMPLE HOLDER!
6. Return the sample holder pieces to its storage box
7. Replace slits with Standard Slit Configuration (1/2°, 1°, 8 mm) if different
8. Return any other used slits back to its storage box
9. Brush up any sample that may have dropped into the cabinet
10. Turn OFF the lights to the cabinet (if ON)
11. Close doors (if open)
12. Record your time-out on the sign-in sheet, slits used, and any issues encountered like dirty sample holders or instrument errors
XVI. Troubleshoot – 1/3

1. You may attempt to troubleshoot the XRD for only the following reason:
   • If the DataCollector software crashes or freezes and you observe the following...
     1. Cannot control the “Lift-Up” feature to remove the sample
     2. Cannot change the current settings back to 20 mA

2. Select Instrument -> Disconnect if not already disconnected

3. Attempt to reconnect to the instrument by selecting Instrument -> Connect

4. If you receive the following message continue with troubleshoot
   • If it’s something else, email the lab manager (Perry: pcheung@ucr.edu) or stop by the office in MSE 311 ext. 3378

5. Select File –> Exit to close DataCollector and log out
XVI. Troubleshoot – 2/3

6. Press the “Off” button

7. The instrument will perform a controlled power-down of the system

8. Wait approximately 30 seconds

9. Toggle the **Safety Key** from “On” to “Off” 5 times

10. Set **Safety Key** in “On” position

11. Press and hold the “On” button

12. Wait until the following occurs:
   1. HT-enabled light turns on
   2. X-Rays On light turns on
   3. 15 kV and 5 mA is shown on the console

13. Log-in to DataCollector

14. Select **Instrument -> Connect**

15. Select **Reflection-Transmission Spinner** and click **OK**
XVI. Troubleshoot – 3/3

16. A dialogue box will appear, just click **OK**

17. Click **Yes** and wait for the system to initialize

18. Click **OK**

19. Reset the **Tension = 45 kV** and **Current = 20 mA**

20. Continue with experiments