FT-IR Training Notebook: ATR

Lab Manager: Dr. Perry Cheung MSE Fee-For-Service Facility Materials Science and Engineering University of California, Riverside

January 25, 2021 (rev. 2.2)

Before you begin...

- Receive a user name and temporary password for Faces scheduling
- Identify your ENGR username and Password from Systems
 - □ If you don't have an ENGR account, send me the following:
 - Full name
 - Principal Investigator (PI)
 - UCR NetID
 - 🖵 email
- Coordinate a time with the lab manager for training
- Schedule a 1 hour block on Faces for your training

FT-IR Operation

- I. Pressure Tower Setup
- II. Initiate Software
- III. Collect Background
- IV. Sample Prep: Solids
- V. Sample Prep: Liquids
- VI. Collect Sample
- VII. Saving Data
- VIII. Peak Identification
- IX. Cleanup
- X. Library Search
- XI. Smart Transmission Accessory

I. Pressure Tower Setup – 1/2

- 1. To adjust the position of *Pressure Tower:*
 - Turn Knob counter-clockwise = raise Tower
 - Turn Knob clockwise = lower Tower

- 2. Inspect the *Pressure Tip* by moving *Tower Arm* to *Cleaning Position*
 - Move *Tower Arm* to the right until it stops

Cleaning Position

- 3. Clean the *Pressure Tip* (remove if necessary) with appropriate solvent
 - Recommend Water and IPA
 - DO NOT USE ACETONE!
- 4. To remove/install *Pressure Tip:*
 - Rotate *Tip clockwise = remove*
 - Rotate *Tip counter-clockwise = install*

I. Pressure Tower Setup – 2/2

II. Initiate Software – 1/10

- 1. Double left-click on the *OMNIC software icon* for FT-IR
- Ignore the Standards Expiration Warning and click OK
 Close the Thermo Scientific OMNIC Help popup window

Contents Index Search

ñ-

Options

Print

4. The OMNIC main window will now appear

Confirm that *Smart iTX – Diamond (Smart iTX_Diamond.EXP)* appears in the Experiment window

Hide

A standard is expired

A standard you are using for Performance Verification or ValPro Qualification

II. Initiate Software – 2/10 MIC - [Withow1]

- 6. Select *Collect -> Experiment Setup* at the top window
- 7. Confirm that *Save interferograms* is *checked* =
 - Saving interferogram data lets you reprocess in case you want to restore the original data, even using a different background or changing parameter settings used
- 8. Confirm that *Save automatically* is *unchecked*
- 9. Set preferred *Background Handling* settings ———
 - Before every sample
 - After every sample
 - After 120 minutes (default)
 - Use specific file

Note: A new background will be requested if there is a change in resolution or data spacing of your sample spectrum!

Collect	Bench Quality	Advanced Diagnostic	Canfigure
Estimated time for this collection: 00:00:23 No. of scans: 16			Save automatically
	Resolution: 4.		Base name: C:\My Documents\Omnic\autosave\Dongwei1908080
	ata spacing: 1 Final format: A		Background Handling O Collect background before every sample
	Correction: None		Collect background after every sample Collect background after 120 minutes
			Collect background after 120 minutes Use specified background file: Browse
-		its in collect window	Collect 64 scans for the background
٨	Min: 0.00	Max: 2.00	Experiment description:
Experiment title: Smart iTX - Diamond			Smart iTX Accessory with Diamond Crystal

Experiment: Smart iTX - Diamond

II. Initiate Software – 3/10

10. Select desired No. of scans - recommend starting at 16 scans

- Increase to optimize desired spectrum signal/noise
- Recommend increments of powers of 4 (e.g. 16, 64, 256, 1024,...)
- 11. Select desired *Resolution value* recommend 8 or 4
 - Decrease value to increase spectrum resolution
 - Decreasing value too much may result in increased noise!
 Note: *Aperture* = *High resolution* if Resolution value is ≤ 2
- 12. Check Estimated time for collection
 - Time dependent on *No. of scans* and *Resolution*
- 13. Select desired Final format
 - % Transmittance
 - Absorbance (default)
 - Etc...

Note: Convert to other Y-axis units in *Process* menu

ollect	Bench	Quality	Advanced	Diagnosti
Estin	nated tin	ne for this	s collection:	00:00:23
١	No. of sc	ans: 16		
	Resolu	tion: 4.		•
D	lata spac	ing: 1.9	29 cm-1	
	Final for	mat: Abs	sorbance	•
	Correct	tion: No	ne	-
Au	tomatic a	tmosphe	ric suppress	ion
Pre	eview dat	a collectio	on	
Us	e transm	ittance da	ata during pr	eview
Us	e fixed Y-	axis limits	s in collect w	vindow
1	Min: 0.0	0	Max: 2	.00
Expe	riment ti	tle:		
and the second second	t iTX - Dia	amond		

II. Initiate Software – 4/10

- 14. Select desired *Correction type* to *None*
- 15. Decide if *Automatic atmospheric suppression* is desired
 - Effects of water vapor and carbon dioxide will be automatically suppressed via quantitative model
- NOTE: Do NOT use this feature if atmospheric conditions change very slowly, only use if conditions change rapidly
- 16. Check *Preview data collection*
 - Views preliminary data before start of sample for verification
- 17. Decide if you want to preview data collection using % transmittance
 - May provide an improved preview of the data
- 18. Decide if fixed Y-axis limits will be used in the preview
 - Recommend using Min: -5% to Max: 105%

Conect	Bench Qua	lity Advanced	Diagnos
Estin	nated time for	this collection:	00:00:23
1	lo. of scans:	16	
	Resolution:	4.	-
D	ata spacing:	1.929 cm-1	
	Final format:	Absorbance	•
	Correction:	None	•
Aut	omatic atmos	pheric suppress	ion
V Pre	eview data coll	ection	
Us	e transmittanc	e data during pr	eview
Us	e fixed Y-axis I	imits in collect w	indow
1	Vin: 0.00	Max: 2	00
Expe	riment title:		
Smar	t iTX - Diamon	d	

II. Initiate Software – 5/10

- 19. Select **Bench** tab
- 20. Confirm that the following are correct:
 - Source = IR
 - Accessory = Smart iTX
 - Window = Diamond
- 21. Select desired *Max* and *Min* range limit for your scans
 - Recommend using *Recommended range*
- 22. Select the *Gain* parameter
 - Electronically amplifies signal recommend Autogain
 - DO NOT set to *Autogain* if performing quantitative analysis
- 23. Select the desired Aperture
 - *High resolution* used with resolution at 2 or less for better stability and accuracy

Bench

Collect

- Medium resolution recommended with resolution 4 for better Signal/Noise
- 24. Confirm the *Attenuation* is set to *None*

Parameter	Value	
Sample compartment	Main	•
Detector	DTGS KBr	•
Beamsplitter	KBr	•
Source	IR	•
Accessory	Smart iTX	•
Window	Diamond	•
Recommended range	4000 525	
Max range limit	4000	
Min range limit	400	
Gain:8	Autogain	•
Optical velocity	0.4747	•
Aperture	Medium resolution	•
Sample shuttle		
Attenuation	None	-

Quality Advanced Diagnostic Configure

II. Initiate Software – 6/10

25. Select Quality tab

Collect Bench Quality Advanced Diagnostic Configure

26. Determine if you want any spectral quality characteristics to be checked during

YOUR SCANS Select view:

Spectrum
Parameter
Background
Interferogram
All

- Spectrum checks quality of the spectrum scan
- *Parameter* checks the scan parameters
- **Background** checks the quality of the background scan
- *Interferogram* checks the raw interferogram signal
- All checks all the above characteristics
- 27. If you choose to check *Spectrum*...
 - Peaks present? checks for peaks and if sample is positioned correctly, recommend ON at 50%
 - Totally absorbing peaks checks for absorbing peaks, recommend ON at 50%
 - Fringes or channeling checks for back reflection inside sample, recommend ON at 50%
 - Derivative peaks checks for derivative-shaped peaks, recommend ON at 50%
 - Baseline error checks for baseline problems, recommend ON at 50%
 - **CO**₂ levels checks for CO₂ absorption, recommend **ON** at **50%**
 - H₂O levels checks for H₂O absorption, recommend ON at 50%

II. Initiate Software – 7/10

28. If you chose to check *Parameters*...

- **Spectral range** checks if spectral range is consistent for the hardware, recommend **ON**
- Apodization correct checks apodization type is appropriate, recommend ON
- *Resolution* checks if resolution is appropriate for the experiment, recommend *ON*

29. If you chose to check *Background*...

- Contamination peaks checks for contaminants, recommend ON at 50%
- Detector icing checks signs of detector icing, recommend NO
- **CO₂ levels** checks for CO₂ absorption, recommend **ON** at **50%**
- H₂O levels checks for H₂O absorption, recommend ON at 50%
- Background correct for accessory checks background spectrum, recommend ON at 50%
- 30. If you chose to check *Interferogram*...
 - *Peak amplitude within range* checks if amplitude is sufficient, recommend *ON*
 - Interferogram minimum = 0.20 and Interferogram maximum = 9.80
 - Minimum peak above noise checks if peak signal is above noise level, recommend ON
 - Peak Minimum = 10

II. Initiate Software – 8/10

31. Select **Advanced** tab

Collect Bench Quality Advanced

Diagnostic Configure

- 32. Confirm *Zero filling* is set to *None*
- 33. Confirm *Apodization* is set to *Happ-Genzel*
- 34. Confirm *Phase correction* is set to *Mertz*
- 35. Confirm that the following are checked:
 - Set sample spacing based on spectral range
 - Set filters based on velocity

xperiment Setup - C:\My Docu Collect Bench Quality ^{Ad}	500 B. C. B.	25150
Zero filling:	None	-
Apodization:	Happ-Genzel	-
Phase correction:	Mertz	-
☑ Set sample spacing ba	sed on spectral rang	le
Sample spacing:	1.0	-
Set filters based on velo	ocity	
Low pass filter:	11000	*
High pass filter:	20	-
Single-sided interferogr	am	
Reset bench at start of o	collection	
Start collection at extern	al trigger	
Help Open	Save Save	As)

II. Initiate Software – 9/10

36. Select *Diagnostic* tab

- 37. Click on indicators to check spectrometer components
 - If the values are within the Acceptable Range, they will appear as a
 - If any values show X, contact the Lab Manager immediately!

Collect Bench Quality Advanced Diagnostic Configure

-Q-

II. Initiate Software – 10/10

40. Select *Configure* tab

Collect Bench Quality Advanced Diagnostic Configure

- 41. Confirm *Inactivity Rest mode* is checked
 - Confirm *Hours of inactivity* is set to "1" hour
- 42. Confirm *Daily Rest mode* is not checked

V Inactivity Rest mode Hours of inactivity: 1	
Daily Rest mode	
Exit Rest mode: 5:30 AM	
Start Rest mode: 6:00 PM	
Rest days: Su Mo Tu We Th Fr Sa V IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
	OK Cance
Help Open Save O Save As	

43. Click "*Save*" then "*OK*"

III. Collect Background – 1/2

- 1. It is critical that the *Crystal* is cleaned **BEFORE** *Background* is collected!
- 2. A single *Background* can be used to analyze multiple samples, but it is recommended to collect new *Background* at least every 2 hours

III. Collect Background – 2/2

- 6. Preview **Background Collection** then click **Start Collection** to begin =
- 7. The *Background Collection* will begin with the progress shown at the bottom

IV. Sample Prep: Solids – 1/1

- 1. For **Solid** and **Thin Films** use **Flat Tip** and for **Powder** use **Concave Tip...**
- 2. Ensure the *Flat* or *Concave Pressure Tip* is installed first
- 3. Place sample onto *Crystal*
- 4. Move the *Pressure Tip* into *Sampling Position*

Sampling Position

- 5. Lower the *Pressure Tower* to press the *Sample* against the *Crystal*
- 6. The *Pressure Tower Knob* will *Click* and *Freely Rotate* when the maximum pressure is reached

V. Sample Prep: Liquids – 1/1

- 1. For *Liquid*, *Paste*, or *Gel Sample*...
- 2. Move the *Pressure Tip* into *Cleaning Position* and dispense sample onto *Crystal*

Cleaning Position

- 3. The sample should cover the *Crystal* but DO NOT OVERFILL or else the sample will run off the *Crystal Plate*
- 4. For *highly volatile samples*, place *Volatiles Cover* over sample to reduce of evaporation
 - Install *Flat Pressure Tip*, move into *Sampling Position*, and lower the *Pressure Tower* until the *Pressure Tower Knob Clicks* and *Freely Rotates* when the maximum pressure is reached

VI. Collect Sample – 1/2

VI. Collect Sample – 2/2

5. The Sample Collection will begin with the progress shown at the bottom

- 6. Confirmation of *Data Collection* will be shown
- 7. Click **Yes** to add data to current Window

Data collection has stoppe	ed.
View Collect Status	
Add to Window1?	

VII. Saving Data – 1/1

- 1. Specific spectra can be selected using the 🕟 selection tool at the bottom of window and clicking on it or selecting from dropdown box 🗊 No spectra selected
- 2. Multiple spectra can be selected/deselected by holding down the *Ctrl* key and clicking spectra
- Click *File -> Save* to save a spectrum (e.g. default is SPA) using the current filename
- Click *File -> Save As* to save a spectrum into another file type (e.g. CSV or TIFF)
- Click *File -> Save Group* to save more than one spectrum as a group in one file having file extension .SPG to open later

VIII. Peak Identification – 1/1

1. Click on "*Find Pks*" button at the top _____

- Click the spectrum window to adjust the *Threshold* position on where peaks are to be considered _____
- 3. Adjust the *Sensitivity* button to separate peaks from noise _____

Find Pks

IX. Cleanup – 1/1

- 1. Remove *Sample* from the *Crystal* without scratching the *Crystal*
- 2. Use provided *Q-tips* and appropriate solvent to clean the *Crystal*
 - Recommend Water and IPA
 - DO NOT USE ACETONE!
 - DO NOT USE KIM WIPES!
- 3. Clean the *Pressure Tip* (remove if necessary) and *Metal Surface* with appropriate solvent and *Kim Wipes*
 - Recommend Water and IPA
 - DO NOT USE ACETONE!

- 4. Click on *File -> Exit* to shut down the software
- 5. Log off of your ENGR account

X. Library Search – 1/5

X. Library Search – 2/5

5. Select the desired spectra you wish to search for a library match

6. Click Analyze and select Search...
 or click Search icon

X. Library Search – 3/5

7. The top matches will be shown (below) your acquired spectra (top)

8. Click View Match List and select either Overlay or Stack view

9. Perform *ATR Correction* to achieve better match results

.0. Click Process > Other Corrections and select ATR	Other Corrections
	Select a correction:
Monte - [Window1]	ATR
<u>File Edit Collect View Process Analyze Report Window Help</u> Experiment: Smart OMNI-Transmission Accessory (SmartTranKBr.exp)	OK Cancel

X. Library Search – 4/5

11. The ATR Corrected spectra will be created and marked with a *

12. Click **Analyze** and select **Search...** or click **Search** icon Search

Ŧ

X. Library Search – 5/5

14. If a Match does not result, you will have to find matching spectra online instead

XI. Smart Transmission Accessory – 1/3

- The Smart ATR Accessory is the default accessory installed 1.
- 2. Please contact the Lab Manager if you need to use the *Smart Transmission Accessory* for Transmission FT-IR measurements
- The *Smart ATR Accessory* contains mirrored optics that need = 3. to be carefully taken care to avoid damage and contamination
- Both **Smart ATR Accessory** and **Smart Transmission Accessory** have nozzles to 4.

XI. Smart Transmission Accessory – 2/3

- 5. To remove the *Smart ATR Accessory,* move the lock to the *Unlocked* position
- Carefully remove *Smart ATR Accessory* by gently pulling upward and position nozzles out of slots
- 7. Carefully place aside and KEEP AWAY FROM CONTAMINANTS!
- 8. Carefully insert the *Smart Transmission Accessory* by gently aligning the nozzles into the slots

XI. Smart Transmission Accessory – 3/3

 Once firmly seated into the FT-IR base, move the lock to *Locked* position

10. Remember to remove *Smart Transmission Accessory* and reinsert the *Smart ATR Accessory* before leaving...

