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Introduction: X-rays and Diffraction

Research on X-ray diffractometry and efforts to elucidate crystal structures using X-ray
diffractometry have a long history. Discovered in 1895 by German physicist W. C.
Roentgen (1845-1923), X-rays attracted significant interest for their capacity to penetrate
opaque objects and for potential medical applications. However, despite extensive
research, the nature of X-rays was not understood for many years.

X-rays are electromagnetic waves just like visible rays, but of extremely short
wavelengths, about the size of an atom, a finding reported in 1912 by M. T. E. von Laue
(1879-1960). At the time, crystals were assumed to involve configurations of
periodically arranged atoms. An experiment based on the notion that short-wavelength
X-rays would permit the observation of diffraction phenomena led to a notable
discovery: the Laue image. This research result led to two key conclusions: 1) X-ray
wavelengths are the size of an atom or shorter; and 2) Crystals are composed of atoms
of approximately 0.1 nm in size, arranged in an orderly manner.

Shortly thereafter, W. H. Bragg (1862-1942) and his son, W. L. Bragg (1890-1971),
announced the discovery of Bragg reflection, establishing the foundation for X-ray
crystallographic analysis. Following this announcement, many scientists began using
X-rays to analyze crystal and molecular structures. X-rays also proved to be useful in
the evaluation of industrial materials, and are now used for many different applications.

First used to analyze crystals with simple structures, X-rays were later applied to
the analysis of more complex molecular structures. X-rays are now used to analyze the
structures of ribosomes (proteins) with a molecular mass of 2,500,000. These advanced
applications have been made possible by the establishment of a solid theory on the
scattering of X-rays caused by crystals and by the improvement of equipment achieved

in line with technological progress. The latest devices feature automatic control



functions that enable the gathering of vast data volumes and rapid processing of the
data, refinements to which computers and computing methods have contributed
significantly. The state of the art in such devices has reached the point where they can
be used effectively even by relatively inexperienced researchers.

X-ray diffractometry has two primary purposes. One is to analyze unknown crystal
structures to elucidate their molecular structures. For this application, X-ray
diffractometry is used for structural analysis. The other is to evaluate the characteristics
of industrial materials at the atomic level and to use the data to grasp differences at
infinitesimal scales that make materials superior or inferior.

The MiniFlex II is used for the latter purpose. This machine analyzes common
polycrystalline materials, such as glass. An operator skilled in using the equipment can
analyze a wide range of materials. Countless crystal structures have been analyzed to
date and the results compiled and organized into databases. Comparing the data
obtained with the MiniFlex II against such databases allows us to identify the structure
of an unknown material.

Versatile and compact, the computer-controlled MiniFlex II is also easy to use. Due
to these characteristics, the MiniFlex II is used in laboratories to teach structural analysis
methods. Rather than providing an in-depth discussion of diffraction crystallography,
this booklet seeks to show users how to perform structural analysis with the MiniFlex II.
It begins by discussing Bragg’s law of reflection. Once you understand Bragg’s law, you
will understand the operating principles of the MiniFlex II and understand how to use
the equipment. Using the MiniFlex II in combination with existing databases will then

allow you to analyze and evaluate the structure of unknown materials.



Chapter 1: About X-Rays

1.1 X-rays

Like visible light, X-rays are electromagnetic waves, but at wavelengths quite different
from those of visible light. The wavelengths of visible rays are several thousand
angstroms!. X-ray wavelengths are far shorter: between 0.01 and 20 A. Fig. 1.1 compares
electromagnetic waves at various wavelength regions. As electromagnetic waves, X-rays
demonstrate wave behavior, including reflection and diffraction phenomena, while also

exhibiting the behavior of energy particles.
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Fig. 1.1: Various electromagnetic waves

When you use a detector to detect X-rays, you are observing their particle
characteristics. This is also true for visible rays. Detecting light means to sense the
energy of a photon at a given location, confirming exposure to light. Strong light
delivers many photons to a given location. If you decrease the intensity of the X-ray
source, place a fluorescent plate at the location where a diffracted image appears, and

observe it, you will see that the surface on which the diffracted image is formed is never

' An angstrom, or A, is a standard international unit of measure for X-ray diffraction crystallography; 1 A equals
0.1 nanometer (1 x10 " m, 1 x 10 cm)



illuminated in its entirety at any given time. Only one spot on the diffracted image
forming surface is illuminated at a given time; a different spot on the surface is
illuminated the next moment. By recording the illuminated points and observing the
image later, you will see a diffracted image identical to the image you would observe
using a higher-intensity X-ray source. This behavior reflects the dual wave and particle
nature of photons.

With h as Planck’s constant and v as the frequency of X-ray electromagnetic waves,

the energy of X-ray photons, E, is given by the following equation:

E:hv=h04

If wavelength X is expressed in units of A and energy E in keV, we obtain a useful

relational equation. Consider committing this equation to memory.

E [keV] = 12.4/ A [A] (1.1)
For example, the energy of an X-ray with a wavelength of 1 A is 12.4 keV.
X-rays have powerful penetrating force that can be harnessed by medical X-ray
equipment. They have relatively high energy levels: 30 keV or higher. Since the size of
an atom is about 1 A, X-rays with wavelengths equaling the atomic distance or longer

(in a range up to 2 A) can be used for X-ray diffractometry. Such X-rays range in energy

from 7 to 20 keV.

1.2 Generating X-rays

X-rays are generated from an X-ray tube. The modern X-ray tube is based on the
operating principle of the Coolidge tube invented by W. D. Coolidge in 1913, and the
operating principle has not changed over time. Fig. 1.2 shows a photo of the X-ray tube

presently used, together with a cross-sectional diagram.



m M
Cooling
water

Beryllium
(Be)
window

Target

Fig. 1.2: X-ray tube. When the tungsten (W) filament heats up and a high voltage is
applied between the target and filament in a high vacuum environment, the electron beam
collides with the target at high speed, generating X-rays. To allow X-rays to pass beyond
the cylinder, windows made of an approximately 0.25 mm thick beryllium plate are
installed. Utmost caution should be exercised, since beryllium becomes highly poisonous
when oxidized.

When an electric current is applied to a filament in a vacuum, the filament heats up
and generates thermoelectrons. A high voltage is applied to the metal target to
accelerate the electrons and direct them to the target, generating X-rays. This type of
tube is called a sealed X-ray tube. Since the electron beam emitted from the filament
scatters toward the target, an ordinary Wehnelt cylinder is positioned appropriately,
and the proper inverse voltage is applied to the cylinder. This serves as an electrostatic
lens, preventing scattering and resulting in an area of appropriate focus on the target.
Upon impact with the target, X-rays radiate in all directions. Windows made of thin
beryllium plates are mounted on the cylinder wall to allow X-rays to pass beyond the
cylinder.

In this process, most of the kinetic energy of the electrons striking the target is

converted into heat. Only a very small fraction of the energy (g, the X-ray generation



efficiency) is converted into X-rays. This indicates that when accelerated electrons
collide with atoms, the probability of their deceleration, which produces X-rays, is
extremely low. ¢ is proportional to the atomic number of the target and the accelerating

voltage. The following equation approximates X-ray generation efficiency.
£=11x10°Z-V(kV) (1.2)

If the target is made of Cu (atomic number 29) and a voltage of 55 kV is applied, ¢
can be calculated by substituting Z =29 and V =55 into Equation 1.2, yielding a value of
1.6 x 103, This indicates that only 0.16% of the supplied energy is converted into X-rays.
Since most of the energy is converted into heat, increasing the current will cause the
irradiated section of the target to melt, weakening the vacuum and resulting in electrical
discharge, factors that inhibit the stable generation of X-rays. Thus, cooling water is
supplied to the target to keep the X-ray tube in a temperature range in which the target
will not melt. The power limit (kV/mA) of the X-ray tube is defined by the cooling
capacity.

Called the focus size, the size of the section used to generate X-rays is often
significant. Fig. 1.3 shows the geometrical relationship between the X-ray tube filament
and target. Filaments are generally tungsten coils. Electrons discharged from the
tilament are controlled by an electrostatic lens consisting of a Wehnelt cylinder and the
target, forming a band-like electron beam. The target is configured to be orthogonal to
the beam. Thus, the actual shape of the X-ray source resulting on the target is nearly
rectangular. The size is indicated as follows: W x L mm? (W and L indicate width and
length, respectively). For example, a size is given as 10 x 1 mm? or 1 x 0.1 mm? (for an

X-ray tube with a very small focus size).
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Fig. 1.3

Depending on the direction from which the X-ray target is viewed, the apparent
size of the X-ray source varies. Beryllium windows are arranged so that X-rays can be
emitted at an angle of 6° from the target surface. The intensity of the X-rays obtained at
this angle is closest to maximum, and the apparent size of the X-ray source is 1/10 of W
or L (because sin 6° = 1/10). In the case of a normal focus size of 10 x 1 mm?, X-rays
emitted along the filament’s longitudinal axis appear to be 1 x 1 mm? in size. The
window located in this direction is called the window on the point focus side. X-rays
emitted from the side of the filament perpendicular to the above-mentioned direction
appear to be 10 x 0.1 mm? in size. The window located in this direction is called the

window on the line focus side.

1.3 X-ray spectrum

It is important to know the distribution pattern of the wavelength of X-rays generated



by the X-ray tube and the distribution of intensity versus energy (called the spectrum).
How we obtain this information will be discussed later. Fig. 1.4 shows the results
obtained. In (a), the voltage was set to 33.5 kV and the spectrums were obtained using
three types of target: Cr, Mo, and W. In (b), only the W (tungsten) target was used and
the spectrums were obtained while setting the applied voltage to 20, 25, 30, 35, 40 and
50 kV.
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Fig. 1.4: Energy spectra. (a) X-ray spectrum; (b) Voltage versus X-ray spectrum (Target:
Tungsten)

The spectrum obtained with the Mo target shown in 1.4(a) is a typical spectrum.
The wavelength changes continuously and gradually in some sections, while sharp
peaks appear at specific wavelengths in other sections. The former are called
continuous X-rays or white X-rays. X-rays with a sharp peak are called characteristic

X-rays. Briefly described below is the process for generating these two types of X-rays.

1.3.1 Continuous X-rays

When accelerated electrons strike the target material, their direction of travel is altered



by the effects of the electrical field created by the nuclei of the atoms in the target. The
electrons emit electromagnetic waves and lose kinetic energy. This is called braking
radiation (or bremsstrahlung). Since the X-ray energy theoretically cannot exceed the
kinetic energy of the accelerated electrons, the minimum wavelength appears at shorter
wavelengths in the spectrum of continuous X-rays.

The minimum wavelength, Amin (A) = 12.4/V(kV), as seen from Equation 1.1. As Fig.
1.4(a) shows, Amin does not depend on the type of target but becomes longer as the
applied voltage decreases. The lower applied voltage also decreases the intensity of
X-rays. The intensity of X-rays is proportional to the total energy supplied to the target,
which is proportional to the supplied electric power, W (= iV, where i is current and V
the applied voltage), and is also proportional to X-ray conversion efficiency & (cc ZV).
Thus, it is also proportional to iV-2Z.

On the other hand, if the supplied electric power is constant, intensity increases in
proportion to the atomic number Z of the target material. The spectrum of continuous
X-rays in Fig. 1.4(b) shows that X-ray intensity decreases as the wavelength becomes
longer. This is because the longer the wavelength, the more readily X-rays are absorbed.
X-rays of longer wavelengths generated at locations deep in the target are absorbed

relatively easily.

1.3.2 Characteristic X-rays

Accelerated electrons striking the target stimulate K-shell or L-shell electrons associated
with the inner shells of metal atoms inside the target, prompting transitions and
generating atoms that lack electrons (electron holes) in their inner shells. These atoms
are ionized. When this happens, electrons in other shells within the same atom fall into
the holes, emitting electromagnetic waves (photons) with energies in the X-ray region.
These are called characteristic X-rays. Fig. 1.5 illustrates this phenomenon.

Characteristic X-rays are described based on the energy structure created by the
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electrons in the atoms, as shown in Fig. 1.5(b). X-rays generated during the transition
that occurs when the inner shells with holes are K shells are called K-series

characteristic X-rays.
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Fig. 1.5 Characteristic X-ray generating mechanism. (a) Illustration of atomic model (b)
Energy level of electrons in atom

When the inner shells with holes are L shells, the X-rays resulting from the
transition are called L-series characteristic X-rays. Thus, characteristics X-rays are
classified into several series: K, L, M, and so forth. To indicate X-rays of a certain series,
a suffix (a, B, vy, etc.) is appended, from longest to shortest wavelength. Specifically,
X-rays generated by electrons falling from the L shell or M shell to the K shell are
indicated as Ka rays and Kp rays, respectively. Furthermore, since the energy levels of
the L shell and M shell are multilinear, the wavelengths of X-rays resulting from
electron transfers from these levels differ slightly, and their intensities differ as well.
Thus, a numeric suffix is added to differentiate them, such as Kou and Koz. However,

this suffix is not assigned in the order of the wavelength, but in the order from the
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highest intensity. Kou is higher in intensity than Koz, but the wavelength of Kou is
shorter than that of Koz.. However, KB: is higher in intensity than Kf2, but its
wavelength is longer than that of Kpz. The numeric suffix always indicates the order of
intensity, but does not express the order of the wavelength.

Wavelengths of Kou and Koz vary depending on the type of target. For reference,
Table 1.1 shows the wavelengths of Kou and Ko resulting from targets commonly used

for the applications discussed here.

Al Cr Fe Co Cu Mo Ag
Ko (A) 83417 22936 1.93998 1.79285 1544398 0.71359 0.563798

Kaz(A) 8.3393 2.2897 1.93604 1.78896 1.540562 0.70930 0.559407
KB(;\) 7.9605 2.0849 1.75661 1.62079 1.392218 0.63229 0.49707

Table 1.1 Wavelengths of Ka; and Ka; rays

Among characteristic X-rays, Ke is of particularly high intensity, and is selected for
use in X-ray diffraction. Ka rays are in fact doublets of Koz and Kez. It is important to
remember this when using X-ray equipment in an experiment.

The maximum X-ray dose obtained from an X-ray tube depends on the melting
point of the target element and specific thermal conductivity, issues related to X-ray
tube design.

H. G. Moseley systematically studied the K series using elements from Al to Sn and
discovered that the frequency (inverse of wavelength), v, of a characteristic X-ray is
proportional to the square of the value obtained by subtracting a certain value, , from
the atomic number Z. This is called Moseley’s law (1913). With K as a proportional
constant, the frequency of a characteristic X-ray observed is expressed as follows:
W =K(Z - o). This law was discovered a year after Laue discovered X-ray diffraction
phenomena in crystals. Given the primitive nature of the equipment used at the time,
the pace of these discoveries is startling. Moseley’s discovery is often said to have

deepened our understanding of atomic numbers.
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1.4 X-ray absorption

X-ray absorption is important for understanding quantitative analysis and calculating
the depth of analysis. X-ray machines require materials with high X-ray absorption to
shield X-rays. An established equation is used to calculate the required thickness of the
shield to ensure safety, and familiarity with this equation is a good idea. In general,
X-rays of shorter wavelengths have greater penetrating power and require greater care.
On the other hand, X-rays of longer wavelengths tend to be absorbed by air and scatter
readily. In this case, maintaining a certain distance from the X-ray source can ensure
safety. However, because X-rays of longer wavelengths tend to be absorbed by air, they

require high vacuum environments inside equipment.

1.4.1 Linear absorption coefficient xand mass absorption coefficient x/p

The extent of the decrease in the intensity of X-rays resulting from passage through a
material for the distance dx is expressed as —dl. This value is proportional to incident

X-ray dose, I, giving the following equation:

—dI = pIdx (1.3)

Using p as the proportionality coefficient, this equation can be modified as follows:

dl/l = —udx

If the intensity of the X-rays immediately before entering the material is Io and the

intensity after traveling distance x in the material is I, we obtain the following equation:

I'=1yexp(— ) (1.4)
Here, u is called the linear absorption coefficient. When x is measured in cm, u is
expressed in units of cm™. The value y/p, obtained by dividing the above value by the

density p, is called the mass absorption coefficient. This value is specific to the material
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and is expressed in units of cm?/g. Handbooks and other literature often provide a list
of mass absorption coefficients, which can be used to calculate linear absorption
coefficients.

For chemical compounds and composite materials, we can calculate the value y/p
by the following equation if we known the weight fractions, Wj, of the individual

elements.

uo=S W 4,), 0

In the case of powders, the true absorption coefficient depends on packing density.
The value for a powder sample is estimated to be half the value of the corresponding

solid material; therefore, the absorption coefficient is multiplied by %2 in most cases.

1.4.2 Absorption edge

For a given substance, the mass absorption coefficient (1/p) varies with wavelength. The
mass absorption coefficient generally increases with longer wavelengths, as shown in
Fig. 1.6. This graph, which plots X-ray energy (keV) on the horizontal axis, shows
X-rays of lower energy have less penetrating power, while X-rays of higher energy have
more penetrating power. Comparing C, Al, and Fe with Cu shows absorption
coefficients are higher for heavy metals, assuming constant energy levels.

The graph indicates the presence of an energy level (or wavelength) at which the
absorption coefficient changes discontinuously. For example, in the case of Cu,
discontinuity occurs at 8.998 keV, which is equivalent to 1.378 A, slightly shorter than
the wavelengths of Kax1 (1.541 A) and Kp1(1.389 A). This is called the energy of the K
absorption edge, or the wavelength of the K absorption edge.

When you look at the range of absorption coefficients for energy levels going from
lower to higher, you will notice that the absorption rate decreases in proportion to the

energy & in the low energy region and that the absorption rate increases sharply by
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nearly an order of magnitude due to the energy of the K absorption edge and then
decreases again after that point in proportion to £°. In terms of wavelength, the increase

is in proportion to A3.
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Fig. 1.6 Wavelength dependence of mass absorption coefficients of Cu and other elements

A high absorption rate results at an energy level higher than the energy of the K
absorption edge because X-rays are used for the excitation of fluorescent X-rays. Since
X-rays at a lower energy level cannot be used for the excitation of fluorescent X-rays,
their penetrating power is high. As the atomic number increases, the wavelength of the

K absorption edge shifts toward the higher energy (shorter wavelength) side.



1.5 Applying X-rays

The schematic in Fig. 1.7 illustrates an experiment in which X-ray film is placed behind
a crystal sample that is irradiated with X-rays. In this experiment, we observe four

phenomena, with each used for a specific purpose.

Diffracted X-rays
Fluorescent X-rays Laue reflection /
X-rays with specific
wavelength
\l

Slits e

X-ray source Crystal sample Tl -.,_l

Image from X-ray penetration \

Image formed by absorption X-ray film
difference

Fig. 1.7 Schematic diagram of X-ray experiment

1) Most of the X-rays penetrate the sample and cast a shadow on the X-ray film.
There is a contrast between the section where X-rays are absorbed at high
rates and the section where X-rays are not well absorbed. This presents the
inner structure of the crystal nondestructively. This is especially effective for
confirming deposits inside the crystal sample that do not allow visible rays
to pass. Since the 1895 discovery of X-rays by W. K. Roentgen (1845-1923),

this has been a standard method for nondestructive observations of interiors
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of all types of materials, not just of crystals.

2) Some of the absorbed X-rays excite electrons in atoms inside the crystal. When
high energy electrons drop to a resulting empty energy level of the inner
shell, secondary X-rays are emitted. These X-rays, called fluorescent X-rays,
have a wavelength specific to the atom, allowing its identification. This
method, called X-ray fluorescence analysis, is used to analyze chemical
composition.

3) Some of the X-rays entering the crystal collide with the atoms comprising the
crystal and scatter and diffract. The diffracted image, a collection of spots,
reflects the symmetry properties of the crystal structure. Analysis of the
scattering angle and the intensity of the spots reveals the size of the crystal
lattice, the atoms in the crystal, and molecular configurations, providing
detailed structural information. This is the principle underlying the X-ray
diffraction method.

4) By increasing the size of the diffracted spots resulting from the Bragg reflection
in X-ray diffraction and observing them in detail, we can identify sections in
the crystal that satisfy the Bragg reflection condition and sections that do not.
This method can be used to determine distortions in the crystal lattice on the
order of arcseconds, making it possible to evaluate crystal quality. This
method, called X-ray topography, can be used to assess the quality of

artificially grown quartz and silicon monocrystals.

1.6 Effects of X-rays on the human body

Exposure to X-rays, either primary or secondary, can cause various ailments in the
human body, with symptoms depending on the area of the body exposed and the

exposure dose (intensity per unit area). Various units for measuring exposure dose have
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been established, some of which are relatively unknown. We will define some terms

before discussing safety precautions.

1.6.1 Primary and secondary X-rays

X-rays emitted from an X-ray tube form the direct X-ray beam. These are primary
X-rays. When primary X-rays strike a material, whether a vapor, liquid, or solid, the
X-rays scatter. These scattered X-rays are called secondary X-rays. The intensity of
secondary X-rays is several orders of magnitude lower than that of primary X-rays.
Thus, safety should emphasize shielding against primary X-rays.

In an X-ray analysis instrument, heavy metal plates with high absorption rates are
typically used to cover the passage of primary X-rays and to contain the X-rays
generated. This method is used by all X-ray analysis machines. However, secondary
X-rays are always present near the passage of primary X-rays. This means measures
must be taken to prevent the leakage of secondary X-rays. X-rays can leak through gaps

smaller than 0.1 mm following repeated reflection.

1.6.2 X-ray intensity

A counter is used to measure X-ray intensity. The counter measures the number of
X-ray photons passing through the counter tube window during a given time period.
The measurement is called the counting rate and is expressed in cps (counts per
second). Note that this does not measure the X-ray energy (hv), which is directly related
to the penetrating power of X-rays. However, in certain cases, intensity is determined
by the energy passing through a certain area during a given time. Do not confuse this
with the above definition. In this case, the value is calculated by multiplying the above
cps value by the energy of the X-ray photons. The unit of measurement is erg/cm?/sec or
keV/cm?/sec.

The SI unit for exposure or irradiative dose is C/kg. This is defined as the X-ray
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dosage that generates positive and negative ions with an electrical charge of 1 C
(coulomb) in 1 kg of air. Since the use of this unit leads to unwieldy values, a
conventional unit called a Roentgen (R) is preferred in certain cases. A Roentgen is
defined as the X-ray dosage that generates positive and negative ions with an electrical
charge of 1 esu (= 3.3375 x 10 C) in 0.001293 g of air. Expressed in SI units, 1R = 2.58 x
10+ C/ kg.

Exposure rate (irradiation dose per unit time) is expressed in mR/h. In the case of
X-rays with a wavelength of 1.54 A (characteristic X-rays of CuKa), for example, 1 mR/h
is the amount resulting from approximately 200 photons reaching an area of 1 cm? in
one second. If we use a counter with 100% counting efficiency (no counting errors) with
a window of 2.5 cm? the measurement is approximately 500 cps. Shown below are
examples of exposure rates of primary X-rays in an ordinary X-ray diffractometer with a

Cu target.

Distance from focal spot (mm) | Tube voltage (kV)  Tube current (mA) Exposure rate (C/kg/h)

185 20 2 1.8 x 10°
185 40 30 9.8 x 10!
1000 40 30 3.4 x 101

With the above primary X-rays, secondary X-rays will be approximately 10 to 10

C/kg/h, depending on location and conditions.

Absorbed dose, expressed in a unit called a gray (Gy), is the amount of energy
absorbed by the material onto which X-rays are irradiated. An energy of 1 J (joule)
absorbed by 1 kg of the irradiated material, regardless of radiation type or material, is
defined as 1 Gy. The effects of the same absorbed dose on the human body may vary
significantly, depending on the type of radiation. Thus, we use an equivalent value

calculated by applying a correction factor called the relative biological effectiveness
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(RBE). The unit of this measurement is the sievert (S5v). Because RBE is approximately 1
in the wavelength region used for X-ray diffraction analysis, 1 Gy roughly equals 1 Sv.
The exposure dose sustained during each medical use of X-rays is approximately
0.5 mSv in the case of chest diagnosis, or approximately 3 mSV in the case of stomach
diagnosis. There are no restrictions on exposure doses for medical examinations or
treatment. Full-body exposure to natural radioactivity is approximately 0.5 mSv to 1.2

mSy, varying somewhat from region to region.

1.6.3 Preventing exposure

The Ordinance on Preventing Ionizing Radiation Hazards has been established to
prevent exposure to X-rays. It stipulates the following:

e Certified X-ray personnel are to be assigned to each control zone in which
X-ray equipment is used.

e A control zone (area subject to exposure dose of 0.3 mSv/week) shall be
established in a facility in which X-ray equipment is used. This zone shall
be clearly identified. Individuals other than personnel certified on X-rays
are not given access to this area.

e Certified X-ray personnel must carry a portable dose meter.

o Certified X-ray personnel must receive special medical examinations once
every six months and examinations of the eyes and skin once every three
months. Records of medical examinations are stored for a period of five
years.

e The allowable exposure dose for certified X-ray personnel is 50 mSv per
year and 30 mSv per three months. These values assume worst-case
full-body exposure.

In view of the exposure rates mentioned above, exposure to secondary X-rays over

the course of a year (based on 50 weeks per year and 40 hours per week) would appear
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to exceed the allowable annual exposure dose. However, in reality, no tasks would
result in exposure to secondary X-rays for 2000 hours in a single year.

The Rigaku MiniFlex II does not present exposure hazards as long as it is used
correctly. However, there is a risk of certain health hazards caused by a short-term
exposure to primary X-rays. For instance, placing a fingertip in primary X-rays of
1.8 C/kg/h for one minute will result in a dose of approximately 1 Sv. Since this is a
localized exposure, it will cause only minor skin inflammation that eventually heals. In
the case of localized skin exposure, the following symptoms may emerge after one to
three weeks.

1to 3 Sv: Skin inflammation (first-degree burn) (hair loss)

5 to 12 Sv: Skin inflammation (second-degree burn) (hyperemia, tumefaction,
actinic erythema, hair loss)

10 to 18 Sv: Skin inflammation (third-degree burn) (actinic erythema, blisters,
severe inflammation)

These conditions will heal. X-ray analysis equipment will never result in full-body
exposure. You are directed to consult the specialized literature for information on
potential exposures involving transmission method (X-ray radiography: radiographic

imaging of welds) and isotope-related equipment.

1.6.4 Relationship between dose rate and counting rate

As mentioned earlier, 2.58x107 C/kg/h equals approximately 500 cps. This value varies
depending on the X-ray wavelength, counting efficiency, and/or the effective window
area. Furthermore, the following factors can significantly change the above conversion
rate and may increase the hazard level by several orders of magnitude. Using the

appropriate counter is critical.

e Using a detector with a wide effective area to measure a thin beam may
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underestimate the dose rate due to differences in area ratio.

oIf a detector is subject to powerful X-rays, malfunctions may result in
inaccurately low measurements.

eSince X-rays are not monochromatic, detection efficiency depends on
wavelength.

e The position of the detector relative to the axis of the X-ray beam affects the

counting rate.






Chapter 2: Geometry of Crystal Lattices

Most industrial materials used today are crystalline substances.
X-ray diffraction is used to identify and evaluate the structure of
these materials. Knowledge of crystals will help you better
understand X-ray diffraction data. This chapter presents a basic
discussion of crystal lattices.

2.1 Space lattice and unit cell

Crystals are formed by the orderly and periodic arrangements of atoms, ions, or large or
small molecules, called space lattices. A periodic structure is a structure consisting of
repeated basic units. These structures are said to demonstrate translational symmetry.
The basic unit is called the unit cell. For a one-dimensional periodic structure, the unit
can be determined unambiguously. For two-dimensional or three-dimensional periodic
structures, there are several ways to define the unit cell. Some guidelines apply: The
unit cell should be as simple as possible. A simple unit cell means that the number of
parameters used to describe the lattice is small. Once the arrangement of atoms or
molecules in the unit cell is determined, the structure of that crystal is known to a
certain extent. Current research now looks beyond molecular and atomic configurations
to examine the distribution of bonded atoms and anisotropic thermal oscillation of
atoms; the study of crystal structures often involves acquisition of such information.

If you consider three-dimensional periodicity, you will note that the unit cell must
be a parallellepiped. The standard unit cell is shown in Fig. 2.1. To describe it
mathematically, a total of six parameters must be specified: the lengths of the sides of
three edge-sharing rhomboids, 4, b, ¢, and the angles formed by the rhomboids, «a, g,
The three basic vectors, a, b, ¢, may also be used to express the unit cell. If the basic

vectors are used, any point on the crystal lattice can be expressed as shown below. This
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expression may be more convenient.

rmnp =nja + n2b + nsC (2 ])

Here, n1, n2, n3 are integers, but since crystals are finite, it is reasonable to assume

that these integers are also finite.

a Y

Fig. 2.1: The standard unit cell

2.2 Crystal system

Consider the symmetry properties of the lattice points of the three-dimensional lattice
formed by the repeated arrangement of the unit cell in Fig. 2.1. In doing so, assume that
the lattice is infinite, not finite, and consider the symmetry elements of the selected
lattice points.

If we connect any two lattice points and examine symmetry properties in relation to
the line connecting the two points, we identify the following symmetry elements:

1) One-fold rotational axis: Indicated by 1. When rotated 360° around this axis, the
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lattice returns to its original position. If we select two lattice points and examine the
symmetry properties in relation to the connecting line, we find that a 360° rotation
returns the lattice to its original position. Thus, this symmetry property exists
around any axis.

2) Two-fold rotational axis: Indicated by 2. When rotated 180° around the axis, the
three-dimensional lattice overlaps with another lattice, making it indistinguishable
from the original lattice.

3) Three-fold rotational axis: Indicated by 3. When rotated 120° around the axis, the
three-dimensional lattice overlaps with another lattice, making it indistinguishable
from the original lattice.

4) Four-fold rotational axis: Indicated by 4. When rotated 90° around the axis, the
three-dimensional lattice overlaps with another lattice, making it indistinguishable
from the original lattice.

5) Six-fold rotational axis: Indicated by 6. When rotated 30° around the axis, the
three-dimensional lattice overlaps with another lattice, making it indistinguishable
from the original lattice.

6) Reflection plane: Indicated by m. Assumes a lattice plane that serves as a mirror. That
lattice plane reflects the image of another lattice above the plane, and the reflected

lattice overlaps with the lattice below that lattice plane, making it indistinguishable.

7) Inversion: Indicated by 1 (inversion center) Select a lattice point. When the vector
from the lattice point to a selected origin is r, the lattice point is located at the -r

position. This lattice is described as a lattice with an inversion center.
8) Rotation inversion or rotation reflection: Indicated by i, 2 (=m), §(= 3+ i), 4,

é(= 3 + m). Combination of rotation and inversion operations returns the lattice to
the original position.

Symmetry operations of combinations of those described above are also symmetry
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elements. Thus, mathematically, there are 32 point groups in total. Space lattices with
these 32 symmetry elements can be divided into seven types, based on the shape of unit

cell. These are called the seven crystal systems.

Number of parameters
Crystal system Parameters (Symmetry elements of
space lattice)
Triclinic arxbx#c 1
azfzy 6(1)
.. a#=b #c 4 (2/m)
Monoclinic a=y=90°zf (b axis as the main axis)
Orthorhombic o i ;;i/ i ; 0° 3 (mmm)
Trigonal a=b=c 2 2
& a=B=y < 120° # 90° 2 (3 and 3m)
a=b=c
Tetragonal G=f=y = 90 2 (4/m and 4/mmm )
Hexagonal o= ﬂa: ;Oob ji 120° 2 (6/mand 6/mmm )
. a=b-=c
Cubic o=B=y= 90 I (m3 and m3m)

Table 2.1: Seven crystal systems

The following describes the method for indicating symmetry elements and explains
their meaning. First, let’s take a look at the main axis in a given unit cell, which is not
necessarily the a axis. Write the symmetry element of the axis at the beginning.
Thereafter, write the symbols of the symmetry elements for the second axis intersecting
the main axis. To indicate that the axes cross at right angles, “/” is indicated
immediately after the corresponding symmetry element. Thus, 2/m means that there is a
two-fold rotational axis around the main axis and a reflection plane at a right angle to
that axis. The meaning of 4/mmm is that there is a four-fold rotational axis, a reflection
plane at a right angle to the four-fold rotation angle (“/m”), and two other reflection
planes indicated by mm. You are advised to check these symmetry elements in the unit
cell in Fig. 2.2.

When translational symmetry is added to the symmetry elements of space lattice
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and the symmetry of the atomic configuration in the unit cell is taken into
consideration, the number of possible combinations of symmetry elements totals 230.
This means that all three-dimensional atomic configurations can be classified into 230
types; therefore, actual crystals correspond to one of 230 space groups. However,
examination of the three-dimensional symmetry of diffracted spots obtained by
irradiating X-rays onto crystals shows only a group of lattice points with a center of
symmetry. The number of such elements is only 11. They are called Laue groups.
Although the three-dimensional lattices formed by diffracted spots must not be
confused with crystal lattices, both are three-dimensional space lattices. Crystal lattices

can also be expressed with 11 types of symmetry elements, as illustrated in Fig. 2.2.

2.3 Bravais lattice

Each of the seven lattices listed in Table 2.1 includes only one lattice point in the unit
cell. These lattices are called primitive lattices. Take one such lattice and create another
lattice that is exactly the same. Place that lattice at a location slightly displaced from the
original lattice position to create a compound lattice. This is called a complex lattice. To
give the same symmetry as the original lattice to this complex lattice, it is necessary to
combine more lattices of the same type. However, the number of combined lattices is
limited. There are seven original lattices and seven additional lattices. Thus, a total of 14
complex lattices are created. This type of lattice was discovered first by Auguste Bravais
(1811-1863) and is called the Bravais lattice. By convention, space lattices with
sublattices at special positions to be added to primitive lattices are body-centered
lattices, face-centered lattices, or base-centered lattices. As shown in Fig. 2.2, there are 14
types: simple cubic, body-centered cubic, face-centered cubic, simple tetragonal,
body-centered tetragonal, simple hexagonal, simple rhombohedral, simple

orthorhombic, body-centered orthorhombic, face-centered orthorhombic, base-centered
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orthorhombic, simple monoclinic, base-centered monoclinic, and simple triclinic.

Triclinic

Triclinic

Monoclinic

Monoclinic P Monoclinie ©

LILILT

Orthorhombic P Orthorhombic € Orthorhombic I Orthorhombic F

Orthorhombic

Trigonal

Trigonal R

Tetragonal

Tetragonal P Tetragonal T
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Hexagonal

-

Trigonal and Hexagonal P

Cubic

Cubic P Cubic I

Fig. 2.2 Bravais lattices

By changing the lattice vectors of one of the complex lattices shown in Fig. 2.2, a
primitive lattice can be created. In such a case, the crystallographic axis changes from
that shown in Fig. 2.2, and the lattice then belongs to a different crystal system. In

addition, the atomic coordinates become difficult to intuitively grasp.

[111]

e

7 T

A\

Fig. 2.3 Face-center cubic lattice and its primitive lattice

As an example, Fig. 2.3 shows a primitive face-centered cubic lattice. This is not a
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cubic crystal but a triclinic system. What is important here is that selection of a crystal
system is not unambiguous. Selecting an axis haphazardly would result in confusion.
Ideally, select an axis with a high degree of symmetry as the main axis. If you discover
an unknown crystal, consult specialized references to determine the appropriate crystal

system.

2.4 Lattice plane and Miller indices

In a three-dimensional lattice, selecting and connecting three non-linear lattice points
forms a plane. Such a plane is called a lattice plane (or the net plane of a lattice) or
crystallographic plane. An infinite number of parallel planes with constant interplanar
spacing (spacing between lattice planes) constitutes a three-dimensional lattice. There
are an infinite number of such lattice planes in a space lattice. Since X-ray diffraction is
closely associated with lattice planes, confusion can result if names are not given to

lattice planes. We use three numbers, or indices, to identify a specific plane in a lattice.

C
114

11&
14

Fig. 2.4: Definition of Miller indices

As shown in Fig. 2.4, select three integers h, k, I and envision a plane intersecting
unit vector a at 1/h, unit vector b at 1/k, and unit vector c at 1/l. When this plane is
extended, it always crosses the lattice points of the a-axis, b-axis, and c-axis. You can

confirm this by drawing a diagram. The group of planes parallel to this lattice plane
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consists of the h lattice plane, k lattice plane, and I lattice plane, based on the three
integers h, k, I. Derived from Miller’s discovery, these are called Miller indices (or plane
indices).

While explanations may differ from book to book, they all mean the same thing, as
you can confirm by drawing a diagram. Here is yet another way to explain this concept.

In a space lattice, select three points that are integral multiples of unit vectors a, b, c,
with /', k’, I’ being the three integers. Let’s name these points A, B, and C. Envision a
lattice plane intersecting these points. Their inverse numbers are 1/h’, 1/k’, and 1/I’. Then,
find the integers h, k, | that maintain the same ratio as these three numbers. In other
words, h, k, [ are integers that are coprime and satisty the following conditions: h = m/h’,
k=m/k’, | =m/l'. The integers h, k, | are the same Miller indices derived earlier.

Here is another definition to consider when using Miller indices. If the a, b, and ¢
axes of a unit lattice are equally divided by integers, h, k, I, and those points are
connected, a plane will be formed. Since this plane always passes through the lattice
points, it is a lattice plane. Next, examine the inverse numbers of the equally divided
points 1/h, 1/k, and 1/I. Needless to say, these inverse numbers are h, k, and I, which are
Miller indices.

When considering the interplanar spacing of a plane group having indices, A, k, [,
the distance from the origin to the plane shown in Fig. 2.4 becomes the interplanar
spacing of that lattice plane. Thus, the former expression is convenient. That single
lattice plane or a plane group parallel to that plane is written as plane hkl or (hkl). The
parentheses are a symbol used to indicate a lattice plane, and the directions of their
normal lines are indicated in brackets [hkl] according to the rule established by the
International Union of Crystallography (IUCr). A space lattice also contains a large
number of equivalent lattice planes, all of which are expressed as {khkl}, and the
orientation of all equivalent planes is indicated as <hkl>.

Let's examine some concrete planes. When a lattice plane lies parallel to a
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crystallographic axis, its point of intersection with the other two axes is said to occur at
infinity. For a lattice plane intersecting the a axis at lattice point 2 and the b and c axes at
infinity, the inverse numbers are 1/1, 1/e, 1/ respectively, and the integer ratios are 1, 0,
0. This is plane (100).

Next, consider a lattice plane intersecting the a axis at lattice point —2 and the b and
c axes at infinity. This plane is (-100), indicated (100). This plane can be envisioned as a
plane viewed from the back side of the (100) plane. In certain cases, when we examine
an actual crystal structure, the atomic configuration observed from the front side of the
crystallographic plane may differ from the atomic configuration viewed from the back
side. For example, we might observe a plane of atom A and a plane of atom B, then see
planes of atom A and atom B again. The above expression is useful for indicating on

which side of the crystallographic plane the observations occur.

ct

o
\
a (010) (110) /””3' \
- [ S ~ \
2

Fig. 2.5: Typical crystallographic planes

When a plane is further extended so that it intersects the a axis at a midway, %, of
the lattice point, and intersects the b- and c-axes at infinity, we obtain the plane (200).
This plane is parallel to plane (100) and indicates a group of planes whose interplanar
spacing is half that of the (100) plane. In general, the plane with interplanar spacing of
1/h is (h00). Think of Miller indices as indices containing information on interplanar
spacing and the orientation of the lattice plane. Fig. 2.5 shows typical lattice planes in a

cubic crystal system. You should familiarize yourself with these planes.
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Problem: Describe the plane (111) in a face-centered cubic lattice. How are the atoms
arranged on that plane? Draw a diagram of the atomic configuration on the plane above
and on the plane below.

Problem: Confirm that the various methods of defining Miller indices described above
are actually the same by drawing two-dimensional lattices.

2.5 Interplanar spacing

An important parameter when discussing space lattices is the interplanar spacing. The
previous section stated that a space lattice consists of numerous lattice planes. A lattice
plane is characterized by the direction of the normal to the plane and by interplanar
spacing. Here, we examine the orientation and interplanar spacing of the lattice plane
defined by the indices hkl, and see how these quantities are determined.

First, consider the unit vector n along the direction of the normal to a lattice plane.
The value of the scalar product of n and a/h, b/k, or ¢/l determines interplanar spacing.

The following equation expresses this relationship:

(an/h) = (bnlk) = (cnll) =/dw/ (2.2)

For cubic/orthorhombic crystal systems in which the a, b, and ¢ axes intersect at
right angles, and for hexagonal crystal systems, the relationship between dna and the
lattice constant indicated in Table 2.2 can be deduced by straightforward geometry.
However, determining this relationship for monoclinic, triclinic, and trigonal crystal
systems is more difficult. For such cases, we introduce the concept of the reciprocal
lattice (see Appendix B: Diffraction by crystals). This concept makes the determination
of the relationships relatively easy. Table 2.2 summarizes the results of an examination
based on this idea.

We can obtain various values for interplanar spacing dws characteristic of a crystal
sample through X-ray diffraction experiments (described in detail below). Organizing

the obtained values makes it possible to determine the indices for the dus based on an
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established method. In short, we can determine the indices of the lattice planes. We can

then determine the lattice constants using the above equations.

Crystal Interplanar spacing hkl Equation
system no.
Cubic (Vdy)* = (1/0) *(h* + k* +17) 2.3)
Tetragonal (1d)° = (W +K)la’ +1°/ 2. 4)
Orthorhombic (1/dw = (h */a 2) + (kz/b 2) +( /e 2) 2.5)
Hexagonal (V) * = (43&) (0" + hle + 1) +(1°/c ) 2.6)

Trigonal (1/d)’ = { (1/&’)(W’+i*+F)sin’a+2 (hk+ki+1h)
(cos’ a—cosa) } x (1+2cos’ a-3cos’ a)” (2.7)

@) (Vdw) = {(h/a)+(K/b)—(2hkcosyab))sin’ y +(/c’)
Monoclinic

2.8
®)  (1dw)? = {(W/d)+(PP/E)~(2hicosflac) }sin’ B +(K/B) -8)
(]/dhkl) 2 =
Triclinic (W) &) sin’a+ (k’/b7) si’ B+ (17/¢?) sin’y
+ (2hk/ab)( cosa cosf—cosy)
+ (2kl/bc)( cosf cosy—cosa) 2.9)

+ (2lh/ca)( cosy cosa—cosf) }
x (1—cos’ a—cos’ B-cos’y + 2cosa cosf cos 7)™

Table 2.2: Crystal systems versus interplanar spacing hkl

The method of least squares is now often used to determine the lattice constants by
computer. As mentioned in the previous section, determining the crystal system for
completely unknown crystals is a major undertaking. However, a crystal is formed by
bonded of atoms and molecules; thus, the crystal structure can be classified based on
the types of bonds. Such knowledge is useful for identifying crystals of an unknown

sample. Chapter 4 focuses on this aspect.



Chapter 3: Bragg reflections and X-ray

diffractometers

The concept of the reciprocal lattice is one element in explaining
the theory of X-ray diffraction phenomena associated with crystals.
Understanding this concept will aid in understanding all types of
scattering phenomena. This chapter is designed to allow the reader
to understand the Bragg reflections associated with powder X-ray
diffractometry and certain crystal structures using a diffractometer,
without the need for an in-depth knowledge of the concept of a
reciprocal lattice—based instead on an understanding of light
reflection, refraction, and interference phenomena. This chapter
also summarizes the information obtained from sample substances
based on the Debye-Scherrer diffraction profiles resulting from
irradiating powder samples with X-rays.

3.1 Bragg reflections

Fig. 3.1 shows a schematic diagram of the cross section of a group of parallel lattice
planes in the space lattice of a crystal. The circles represent the atoms that comprise the
crystal. The value d indicates the interplanar spacing. We can examine the scattering
phenomenon resulting from the irradiation of X-rays with wavelength 1 onto the lattice
plane at angle 6.

As a first step in this examination, consider the scattering of X-rays caused by the
first-layer atomic plane A-A’. The X-ray beam entering at incident angle* & relative to
the surface is scattered by the atoms in the surface layer. It is reasonable to assume that

the phenomenon observed is the same as if the plane A-A’ behaved like a flat mirror.

2 In the case of visible light, this angle is called the glancing angle, and the incident angle is its complementary
angle. In the case of X-ray diffraction, the angle is called an incident angle.
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Regardless of incident angle 6, scattered waves reinforce one another along the
direction of the emergent angle equal to the incident angle. This mirror reflection occurs

at any incident angle.

Fig. 3.1: Diffraction of X-rays by planes of atoms.

Next, consider X-rays scattered by the atomic plane B-B" at distance d from the
aforementioned atomic plane. If the atomic plane A-A’ did not exist, atomic plane B-B’
would produce the same mirror reflection. However, when the two atomic planes cause
scattering, the mirror-reflected waves from the top atomic plane and the
mirror-reflected waves from the atomic plane below interfere, reinforcing each other
when their phases overlap. As shown in Fig. 3.1, the path difference equals the
difference between IPS and I'P’S’, which can be expressed as 2d sin 6. When this path
difference is an integral multiple of the wavelength, the reflected waves from the two
atomic planes are mutually reinforcing. The reinforcing direction é can be obtained as a

positive integer with the following equation:

2d sin@=nA (3.1)
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This equation is based on a condition that results in the overlapping of the X-ray
waves reflected from the surface atomic plane and one below it. The condition does not
change even if the number of atomic planes increases. Equation 3.1 is based on a
condition in which all reflected waves from each lattice plane have the same phase and
reinforce one another. This is called the diffraction condition. The equation was
proposed in 1912 by W. L. Bragg (1890-1971) and his father, W. H. Bragg (1862-1942), in
England. Therefore, X-rays reflected in direction 6 are called Bragg reflections,
Equation 3.1 is called the Bragg condition, and @ is called the Bragg angle. This
condition differs from the mirror reflection in that no reflection occurs if X-rays enter at
an angle not meeting the above condition.

What is the difference between the phenomenon arising from two or three atomic
planes and that arising from many atomic planes? The difference is the angle width at
which the Bragg condition is satisfied. The higher the number of atomic planes, the
narrower angle width 4268becomes, making the condition more restrictive, as shown in
Fig. 3.2. The bottom of the figure shows the intensity of the Bragg reflection observed at
reflection angle 26. (The graph exaggerates somewhat the difference in full width at half
maximum.) The Bragg reflection width A2@is in inverse proportion to N (the number of
atomic planes). We can use this relationship to estimate the size of the crystal grain (L = Nd)
using X-ray diffraction. (This is described in further detail below.) This is an important
principle to keep in mind.

A more rigorous explanation of the full width at half maximum of the Bragg angle
can be obtained by focusing on the phenomenon where an atomic plane causes mirror
reflection. The Laue condition, derived from the theory of scattering from finite crystals
discovered by M. T. F. von Laue (1879-1960), leads to a clear explanation of full width at
half maximum. The latter involves the concepts of a reciprocal lattice and the Ewald
sphere. By presenting the diffraction phenomenon using crystals, Laue demonstrated

that X-rays are electromagnetic waves of short wavelengths in the same year that the
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Braggs derived their famous equation.

Bragg angle width A8 Wide Incident X-ray
Reflected X-ray

Incident X-ray Bragg angle width: Narrow

Reflected X-rays

Several atomic planes

Ta Intensity of reflected X-ray Many atomic planes

Intensity of reflected X-rays

Many atomic planes __,

Several atomic planes

4

)
293 —p SCattering angle

Fig. 3.2 Number of lattice planes and change in full width at half maximum. Greater
numbers of atomic planes do not change the Bragg angle but reduce the full width at half
maximum of the Bragg reflection.

We can try to calculate the value of Bragg angle. To simplify the calculation, we use
1 A as the X-ray wavelength and assume that the interplanar spacing of the crystal is
also 1 A. If we substitute these values into the equation 6 = sin"'(A/2d), we obtain
sin"!(1/2). Thus, the Bragg angle is 30°. The scattering angle 26 is twice this value: 60°. As
shown above, when the wavelength of X-rays used equals the size of interplanar
spacing, the Bragg reflection appears at an easily observed angle.

Since crystals have a lattice structure, there are numerous lattice planes and their

orientations exhibit three-dimensional regularity. This can be expressed by the three
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indices hkl. If we know the unit cell parameters, we can easily calculate the interplanar
spacing using equations (2.3) through (2.9). The Bragg angle for the lattice planes is also
easily calculated by substituting equations (2.3) through (2.9) into equation (3.1). Since
the Bragg angle 0 depends on the indices hkl, its value, indicated as 6w, is given by the
following equation: @ = sin"'(A/2dw). This equation indicates an inverse relationship
between @ and d: a large interplanar spacing results in a smaller Bragg angle. The
scattering angle 26 is directly observed and the X-ray wavelength is a known quantity,
so the experimental data are sorted on (sin6)/4, which corresponds to 2d(hkl), the
inverse of the interplanar spacing. These values can be used as physical quantities
specific to each material, and are independent of the wavelength A of the X-rays used in

a particular experiment.

3.2 Extinction rule for Bragg reflection

Fig. 3.3 is a modified version of the crystal structure from Fig. 3.1 that has atomic planes
a-a’, b-b’, and so forth, inserted midway between interplanar spacing d. The inserted
atomic planes are composed of the same atoms as the other planes, but these new atoms
are not necessarily positioned immediately below or above the atoms in the adjacent
planes. However, the mirror reflections from the atomic planes are identical to the
reflections from the plane A-A’.

We consider the X-rays reflected in direction & as before. These X-rays should be a
combination of the X-rays reflected by the surfaces of the dark circles and X-rays
reflected in the same direction by the light circles in the intermediate atomic plane a-a’.
Since the interplanar spacing is half, the path difference of the X-rays reflected by the
two planes can be calculated as follows: 2(d/2) sin 8= d sin 6. Equation 3.1 gives a phase
difference of n(A /2). This indicates that the X-ray waves reflected by the two planes

overlap with the scale of mutual displacement equaling half the wavelength. Since the
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X-rays scattered by dark-colored atoms and light-colored atoms are mutually displaced
by a distance equal to half the wavelength along direction 0, the reflected waves are
cancelled and eliminated. This is called extinction of Bragg reflections or extinction of

diffracted X-rays.

Fig. 3.3: The extinction of Bragg reflections

When the dark-colored atoms differ from the light-colored atoms, the different
scattering amplitudes do not cancel out completely, resulting in combined reflected
X-rays with lower intensity. As mentioned earlier, given the numerous lattice planes in a
crystal, it is natural to assume all lattice planes result in Bragg reflections. However, for
the reason described above, Bragg reflections may not occur from certain planes with
certain interplanar spacing, or the intensity may be lower. This phenomenon constitutes

an extinction rule.

3.3 Debye-Scherrer ring

Powder crystals and polycrystalline substances can be considered aggregates of
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crystallites facing in different directions. Assume that we irradiate a beam of parallel
X-rays having the same wavelength onto such a sample. We will observe X-rays
scattered by the sample on an X-ray film (or two-dimensional detector) placed along the
direction perpendicular to the incident X-ray beam. The observed image will be a
concentric diffracted image similar to the one shown in Fig. 3.4. This is called the

Debye-Scherrer ring.

Flat-plate film \
24
= Debye-Scherrer
ring
Powder sample
Collimator
X-ray source

Fig. 3.4: Debye-Scherrer ring observed by irradiating monochromatic X-rays onto a powder sample

This concentric diffracted image is observed because crystallites with lattice planes
(hkl) facing in the direction satisfying the Bragg condition are always found around the
X-ray beam axis in a powder crystal sample, and the crystallites diffract X-rays in a cone
shape at an angle of 2. On film, this appears as a circle with the incident beam at the
center. Similarly, diffracted X-rays from lattice planes (h'k’l") with different interplanar
spacing travel along the axis line of the cone with different diffraction angle 26's. This
results in numerous concentric circles on the film.

If we place a cylindrical film similar to the one shown in Fig. 3.5 in place of the

flat-plate X-ray film, we can observe all observable Bragg reflections from the sample in
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the region in which the diffraction angle 26 is between 0 and +7. A diffraction machine
capable of mounting strip-shaped film is called a Debye-Scherrer camera. Unfortunately,
neither X-ray films nor Debye-Scherrer cameras are manufactured today, in part due to

issues related to the disposal of waste development solution.

Powder sample Diffracted X-rays

Collimator

Unrolled film

I A

Fig. 3.5: Debye-Scherrer camera and observation data

X-ray film offers extremely high spatial resolution (the smallest feature that can be
resolved) of 1 to 2 um. However, due to its low sensitivity, this film requires long
exposure times. Diffraction equipment using an imaging plate (IP) in place of the X-ray
film to capture diffracted images is still available. Fig. 3.6 shows a Debye-Scherrer
pattern obtained from quartz powder using a cylindrical IP instead of narrow
strip-shaped film. Since the film is cylindrical, the Debye-Scherrer rings appear
distorted vertically and are elliptical in shape.

Instead of using X-ray film, scanning a counter with high counting efficiency and

high intensity measurement accuracy along the surface of a strip-shaped film allows
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quick observations of a similar Debye-Scherrer pattern. This type of measurement
equipment is called an X-ray diffractometer. The Rigaku MiniFlex II is an X-ray

diffractometer. A more detailed discussion is given below.

O |4

am—

Fig. 3.6: Debye-Scherrer pattern of powdered quartz obtained with a cylindrical IP film

In Chapter 2, we learned that a crystal contains numerous lattice planes that can be
designated using hkl. Unfortunately, it is not possible to measure Bragg reflections from
all lattice planes. The Bragg reflections that can be observed with Debye-Scherrer
cameras or X-ray diffractometers are reflections whose scattering angle 26 is in the
range of 0 to m. By substituting the limit scattering angle, 2é«r = m, in Equation 3.1, we
can obtain the limiting interplanar spacing dmi», which has a value of 4/2. This indicates
that Bragg reflections from lattice planes whose interplanar spacing is half the
wavelength of the X-rays used or less cannot be observed. Theoretically, this means that
X-rays of shorter wavelengths would enable the observation of more Bragg reflections.

However, the greater the angle of the Debye-Scherrer ring intervals, the higher their
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density. Thus, we must reduce the diameter of the X-ray beam and take appropriate
measures to prevent reflections from overlapping each other. Hence, the wavelength of
X-rays to be used must be selected after considering the resolution capabilities of the
equipment. Additionally, according to X-ray scattering theory, diffraction intensity is

proportional to A3. Thus, the shorter the wavelength, the longer the measuring time.

3.4 X-ray diffractometer

3.4.1 Parallel beam method

The following discussion is somewhat more theoretical. We can form a thin, parallel
X-ray beam by placing divergent slits (DS) in the vertical and horizontal directions of
the X-rays emitted from a point-shaped (or point focus) X-ray source. When this thin
bar-shaped beam is irradiated onto a sample and the counter is moved in a circular path
around the sample, we observe a Debye-Scherrer ring, as explained in the previous
section. Since a counter is used in this case, the valid efficiency becomes the difference
in the sensitivity of the film to X-rays. X-ray diffractometers using the parallel beam

method take advantage of this principle.

Sample Sample

Soller slits

Focusing

Focusing
mirrors

Detector

Fig. 3.7: Principle of the parallel beam method
Fig. 3.7 illustrates the operating principle. A line-shaped, elongated X-ray line focus

source is used in place of the point focus source. In such cases, vertical Soller slits (VSS,

or parallel slits), which consist of thin equally spaced absorbers, are mounted in place of
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the vertical slits to prevent vertical dispersion of the X-rays. If a sample is bar-shaped,
we use the transmission method for measurements. If the sample is in plate form, we
use the reflection method. In this system, a receiving optical system comprised of

receiving slits (RS), VSS, and scattering slits (SS) is placed in front of the counter.

3.4.2 Convergent beam method (B-B method)

With the convergent beam method shown in Fig. 3.8, we use wider horizontal divergent
slits (DS) so that the X-ray beam from the X-ray source can irradiate more of a
plate-shape sample. The X-rays symmetrically reflected by the sample are converged by
thin receiving slits (RS) positioned equidistant from the sample, and the diffracted
X-rays are counted by the counter. Since this method also incorporates a line focus
X-ray source, vertical Soller slits are set on the incident and receiving sides, in the same
way as in the system shown in Fig. 3.7.

Compared to the parallel beam method, the convergent beam method uses
scattering X-rays more efficiently. This type of diffractometer is highly efficient,
showing high intensity diffracted X-rays proportional to the divergence angle ratio.
Developed by Bragg and Brentano, this method of powder X-ray diffractometry is
called the Bragg-Brentano (B-B) method. Since diffracted X-rays are converged in front

of the counter, it is also called the convergent beam method.

Line focus

Fig. 3.8 Principle of the convergent beam (or Bragg-Brentano) method
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In the case of the B-B method, to obtain symmetric reflections on the sample surface
we must make the distance from the X-ray source to the rotation center of the sample
surface equal to the distance from the rotation center to the receiving slits. We must also
maintain the condition of symmetric reflection even when the diffraction angle 26
changes. This is achieved by maintaining the incident angle & of the X-rays on the
sample at half the diffraction angle 20 (or 0). For this reason, the diffractometer is
constructed to rotate the sample surface at O relative to the counter rotation angle of 26.
In short, this is a 6 -26 diffractometer incorporating a 26 -6 rotation mechanism. The
MiniFlex II diffractometer employs a convergent optical system based on the B-B
method. Although diffractometers based on the parallel beam method offer lower
diffracted X-ray intensity than equipment using the B-B method, they are still in use,
due to unavoidable aberration issues associated with the B-B method. This drawback is

described further below.

3.4.3 Parallelization of X-rays

The easiest way to obtain an X-ray beam is to place a slit S1 with a finite size ¢ at
distance Li after the X-ray source. What would this X-ray beam look like? We can
visualize it by observing the image at distance L2 from the slit. The image will be
formed with a true image and a penumbra. The X-rays scattered by the edges of the slit
project a background image, and the sizes of the true image and penumbra are
determined geometrically by slit width, distance between the X-ray source and the slit,
and the distance from the slit to the image. We can eliminate the penumbra by placing a
second slit at a location removed by a distance L from the first slit. By selecting slit
widths S1 and Sz, and L, we can obtain a desired X-ray beam. However, 51 and S: are
generally the same in the basic setup, as shown in Fig. 3.9. The allowable divergence

angle is given by A0= arc tan(s /2D), where s is slit width and D is the interval.
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Fig. 3.9:  Collimator

This slit system will always generate a penumbra for the second slit and X-rays are
scattered by the second slit. To eliminate these artifacts, the second slit must be placed
as close to the sample position as possible, or else a third slit with the same width must
be mounted immediately after the second slit to prevent scattering. This slit is called a
scattering slit.

The device used to achieve parallel X-ray beams is called a collimator. To improve
data quality, a collimator can be used not just on the X-ray incident side, but on the

receiving side as well.

3.4.4 Monochromatization of X-rays using crystals

A collimator only improves the parallelism of an X-ray beam. The energy spectrum
(wavelength distribution) of the incident X-rays does not change. Except for special
applications, for X-ray diffraction it is more convenient to use X-rays of only a specific
wavelength. Obtaining X-rays of a certain wavelength is called monochromatization.

To monochromatize X-rays, we place a crystal or synthetic multilayer film (called a
monochromator) immediately after the X-ray source to generate Bragg reflections of
characteristic X-rays and collimate them for use as incident X-rays. Another
monochromatization method involves placing the crystal between the sample and the

detector to select diffracted X-rays of a specific wavelength. Regardless of which
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method is used, monochromatization significantly reduces intensity, with the extent of
the reduction depending on the quality of the crystal used as a monochromator.

Monochromator crystals include pyrolytic graphite, LiF, quartz, Si, and Ge. Si and
Ge, which offer excellent crystalline properties, are often used to obtain X-ray beams
with excellent parallelism. In certain cases, X-rays are Bragg-reflected two or three times
for improved parallelism. However, since this attenuates intensity significantly, it is not
suitable for use in laboratory applications.

Fig. 3.10 shows a powder X-ray diffractometer that detects only monochromatic
X-rays, using a spectrometer placed in front of the detector. The MiniFlex II is based on
this configuration. Diffracted X-rays scattered by the sample and collected at focusing
point F are dispersed by crystal M, and diffracted X-rays consisting only of K« rays are
measured with counter SC. In this system, the crystal M is called a counter

monochromator. In certain cases, Crystal M may be placed on the incident side.

! Rowland circle

Fig. 3.10: Optical system featuring monochromator
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3.4.6 Filter method

The simplest way to monochromatize X-rays is the K2 filter method. With this method,
a material that absorbs X-rays near the Kf wavelength and allows X-rays with
wavelengths close to Ka characteristic X-rays to pass through is placed between the
collimators or in front of the detector so that it will detect only diffracted Ke rays. This
method is called the filter method or filter technique. For example, to obtain CuKa
from a Cu target, we use a Ni filter; for MoK« rays, we use a Zr filter. A high-quality
optical system is key to obtaining high-quality data.

The inversion phenomenon, which occurs in a narrow region on the absorption end
where the absorption of shorter-wavelength X-rays is greater, is often used to filter
X-rays. Radiation emitted by an X-ray tube consist of white X-rays and characteristic
X-rays. Specifically, X-rays generated using a copper target are comprised of white
X-rays and CuKa (1.541 A) and CuKp (1.392 A) characteristic X-rays. CuKo is more

useful in actual applications.
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Fig. 3.11: Function of K2 filter. For the data obtained without a filter (a), we observe
diffraction peaks arising from K/ rays. With a filter in place (b), there are no peaks from
diffracted K rays. The decrease in intensity is due to filtering effects.

This can be done with an X-ray spectrometer, but there is an easier way to suppress
the diffraction of CuKp. We can use Ni, which has an absorption end between CuKf
and CuKo. This approach takes advantage of the significantly greater absorption
efficiency of CuKp. By inserting an Ni film measuring about 0.015 mm thick into the
diffractometer optical path, we can attenuate Kf rays to about 1/100 the strength of K«
rays. This film is called a Kf filter. Fig. 3.11 shows data for an experiment performed to

evaluate the effects of a K/ filter.

Problem: Confirm that the reflection hkl mixed with even numbers and odd numbers
(for example, reflections of 100 and 110) does not appear in FCC crystals, in accordance
with the extinction rule.

Problem: We can calculate the lattice constant using the data and Equation 1.8 given the
interplanar spacing. Obtain the value of the lattice constant and compare it to the data
in the literature. The measurement data shows values only for scattering angles of up to
90°. Indicate the maximum interplanar spacing at which X-ray scattering can be
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observed when 26is 180° by calculating the Miller indices.

Incident X-ray

Diffracted
X-ray

Sample surface :;Z"/’%

Causes diffraction %

Does not cause
diffraction

Fig. 3.5: Orientation of crystal grains that satisfy the diffraction condition In a sample of

flat plate shape, only crystal grains for which all lattice planes are parallel to the sample

surface satisfy the diffraction condition. (BV: WHERE DOES THIS BELONG?)
3.4.6 Aberration problem of B-B method
The parallel beam method and the B-B method based on a convergent optical system
both have their own drawbacks and advantages. Due to its high efficiency, the B-B
method produces diffraction one or more orders of magnitude greater in intensity than
data obtained with the parallel beam method. However, we need to be aware of several
problems to measure the diffraction angle precisely or to examine the pattern (profile)
of the diffracted X-rays.

As shown in Fig. 3.8, a circle (indicated by the dotted line) is formed by the
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following three points: X-ray source position X; center O of the sample surface (also the
rotation center of the goniometer); and counter receiving slit position F. This circle is
called the focusing circle or the Rowland circle. If the surface of the sample plate forms
a circular arc around the focusing circle, the diffracted X-rays diverging from one point
on the focusing circle converge on the single point F on the receiving slit. The point of
symmetry is the center O of the sample. However, the radius of the focusing circle
changes when diffraction angle 26 changes. This necessitates a corresponding change in
the radius of the circular arc of the sample surface. Due to the attendant difficulties, we
use a plate-shaped sample instead of an arc-shaped sample. As a result, the X-rays from
one point on the focusing circle disperse and do not converge at the point F on the
receiving slit.

Additionally, because the X-ray source is not an ideal point source, the diffracted
X-rays cover a diffuse area rather than converging to a point. This aberration is due to
geometrical factors associated with the equipment configuration and cannot be
eliminated. Consequently, the profile of the diffracted X-rays becomes asymmetrical or
increases in width. With the B-B method, a change in the position of the sample surface
causes unavoidable changes in the diffraction angle. Since precise measurements of
interplanar spacing are essential for obtaining data on distortion in a sample, the
parallel beam method is recommended for such applications. Keep this aberration issue
in mind when using the B-B method.

If we use a diffractometer that employs a line focus X-ray source similar to the one
shown in Fig. 3.7 and Fig. 3.8, we must pay heed to another problem. As illustrated in
these figures, vertical Soller slits (VSS) are used to eliminate the effects of X-rays
dispersed vertically. When the intervals of the Soller slits are sufficiently reduced, the
optical system should provide a parallel beam consisting of many individual parallel
rays arranged vertically. However, if we increase the intervals to increase intensity, the

vertical divergence angle of the beam will be less restricted, causing the umbrella effect,
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which results in an asymmetrical profile for the diffracted X-rays. If the diffraction
angle 26 is on the base-angle side past n/2, the diffracted X-rays exhibit a slope on the
base-angle side. If the diffraction angle 26 is on the high-angle side past m/2, the

diffracted X-rays exhibit a slope on the high-angle side. Examples are shown below.
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Fig. 3.12: X-ray diffraction pattern. The diffraction profile for zeolite-LTA obtained by
the B-B method is asymmetrical, with the Bragg reflection exhibiting a slope on the
base-angle side. On the high-angle side, however, the asymmetrical pattern shows a gentle
slope on the high-angle side.

Fig. 3.12 shows the results the umbrella effect resulting from CuKa rays diffracted
from a zeolite-LTA sample. This material was selected for this example because it
features a large lattice constant, and because diffracted X-rays on the base-angle side
clearly manifest the umbrella effect. In commonly used optical systems, the vertical
Soller slits (VSS) allow 2.5° divergence, while the DS and RS are 0.5° and 0.15 mm,
respectively. For the vertical direction, fine Soller slits (VSS) are inserted to suppress the
divergence to 0.5°. With the parallel beam method, each Bragg reflection becomes

symmetrical, improving resolution. Although this exaggerates the umbrella effect,
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intensity is increased roughly seven-fold. Where its drawbacks are not an issue, the B-B
method is highly effective.
Koau and Ko overlap in the diffracted X-rays 100, but as the order increases to 310,

then to 600, two peaks with the intensity ratio of 2:1 become visible.

3.4.7 Splitting of Debye-Scherrer ring due to Ka; and Ko, X-rays

If we enlarge the profiles of diffracted X-rays obtained with CsCl, Fe, or Al, we notice
that the peak widths of reflections with large indices can be quite wide. Fig. 3.13 shows
the enlarged profiles for three selected diffracted X-rays obtained from CsCl. Although
each appears as a single low order peak, they bifurcate as the order increases. We can
surmise that these become two independent diffracted X-rays of very high order.
Laboratories tend to use Ka characteristic X-rays with the highest intensity obtainable
from any X-ray target, since Ka characteristic X-rays actually consist of two types of
X-rays (called a doublet), distinguished as Kou and Ka.. Their intensity ratio is I(Kex) :
I(Ka) = 1:2. In passing, the wavelengths of CuKa: and CuKaw are 1.54433 A and 1.54050
A; the difference between the two wavelengths is A1 oc 0.00383 A. Thus, the wavelength
ratio is 2.46 x 107. The difference between Bragg angles resulting from the wavelength
difference is given by 480 = tan@ (A4/1). When 0 is 70°, tan70 = 2.75. Thus, A26 reaches

0.78°. We must keep this in mind when using high order diffracted X-rays.

Fig. 3.13: Change in profile of diffracted X-rays from CsCl sample



Chapter 4: Analysis of X-ray Diffraction Profile

This chapter gives actual data obtained with the MiniFlex Il. To help
provide a general grasp of structural analysis using X-ray diffraction,
the following discussion shows how to analyze the data and what
information about crystal structures can be obtained from the
analysis results.

4.1 Examples of measurements with MiniFlex Il

Fig. 4.1 show three examples of data obtained using the MiniFlex II. The samples in
these examples are cesium chloride, alpha iron (a-Fe), and aluminum (Al). Since an
X-ray source with a copper target was used with a tube voltage of 30 kV and a current
of 15 mA, the CuKa ray wavelength 1.54 A) was selected. The DS and RS slits (see Fig.
3.3¢) are 1° and 0.3 mm, respectively. A pyrolytic graphite crystal (highly orientated
graphite crystal: HOPG) was placed in front of the scintillation counter to detect only

CuKa rays.
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Fig. 4.1 Powder X-ray diffraction profiles observed with a-Fe, aluminum, and cesium
chloride using CuKa rays

Generally, the measured diffraction intensity is indicated in counts/sec (cps) or
simply “counts” in a given time period. This value is plotted relative to the scattering
angle 26 (degrees). For the vertical scale that expresses the intensity, a log scale is
sometimes used. In the measurements shown here, 26 is measured at 0.02° intervals,
with a measuring time at each point of 1.2 sec.

In Fig. 4.1, the diffracted X-rays are already given indices. If we compare these three
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patterns, we will notice the following: 1) the Bragg angles 6w of the diffracted X-rays hkl
are different in the three graphs, and 2) the patterns of change in the intensity of
diffracted X-rays are different in the three graphs. The reason for the former is easy to
understand. Although all three crystals are cubic, their lattice constants differ (4.120 A,
2.866 A and 4.049 A for CsCl, a-Fe and Al, respectively) resulting in the differences in
Bragg angle Ow. The reason for the latter observation is that their extinction rules differ
due to differences in the crystal structures. While Bragg reflections from all lattice
planes are observed in the case of CsCl, only reflections from lattice planes of h + k + [ =
2n (i.e., even) are observed in the case of a-Fe because it is a body-centered cubic lattice
(BCC). On the other hand, Al is a face-centered cubic lattice (FCC); thus, only reflections
from lattice planes that are either all odd numbers or all even numbers appear. Mixed
reflections from odd-numbered and even-numbered lattice planes are not observed. If
we understand the angles that cause diffracted X-rays to appear and the applicable
extinction rules, we can associate them with the crystal structure.

We note another distinctive feature. When scattering angle 26 increases, the overall
intensity of all diffracted X-rays decreases, since X-ray scattering is caused by atoms.
This topic will be discussed later, along with the extinction rule.

We must keep in mind yet another aspect when using samples shaped like flat
plates. Even with polycrystal samples, if the angle of the incident X-rays #is the same as
the angle 6 of diffracted X-rays in the measurement, as with the B-B method, the lattice
planes of the crystal gains being observed are always parallel to the sample surface, as
shown in Fig. 3.7. This diffraction condition is called the condition of symmetrical

reflection.

4.2 Indexing diffracted X-rays and determining lattice constant

Indices of diffracted X-rays are indicated in the diffraction profiles of CsCl, Fe, and Al
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shown in Fig. 4.1 since their crystal structures are well known. Assume that we have
obtained a diffraction profile from an unknown material using the MiniFlex II. The first
step is to index the diffracted X-rays and determine the unit cell. This is a difficult and
time-consuming task, but is nevertheless an important first step in structural analysis.
In general, we start with highly symmetrical crystal systems with fewer parameters.
Specifically, this means we start with cubic or hexagonal crystal systems before
proceeding to other crystal systems of more parameters. Although this is a
trial-and-error approach, analysis should be performed systematically. Various articles
discuss the topic, some dating back to 1949. They are listed below for our reference.

Another indexing method currently used is based on data already compiled.
Structures of a great many substances, both organic and inorganic, have been analyzed
already, and the data is registered and stored by several organizations, including the
IUCr and ICCD. By extracting the structures of substances related to the sample, we can
use the data to assign indices. Software available for such purposes can be used to refine
the lattice constant of a unit cell. You can also use the application included as part of the
PDXL software bundle.

Here, we will take a close look at iron (o~Fe), a BCC metal, shown in Fig. 4.1a. Table
4.1 shows possible lattice planes &kl in order from largest to smallest with respect to
interplanar spacing, assuming a cubic crystal system. The table shows observed
diffracted X-rays and the corresponding 2&0obs) in the next row. The results of
calculating 1/(2dmi) = sin@/ A using this value and the value of interplanar spacing diare
indicated for each, followed by the lattice constant calculated based on each reflection.
For reference, the existing lattice constants are given in the last row. Comparing these
constants with a(obs) can be helpful for evaluation of errors.

As we can see by examining the table, correct indexing of observed diffracted
X-rays is difficult. This is due to unobservable diffracted X-rays, described by the

extinction rule discussed in Chapter 3. Since incorrect indexing prevents the
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determination of certain lattice constants and causes other discrepancies, errors are
recognized immediately. If incorrect indexing occurs, we simply repeat the procedure.
In the case of BCC above, only diffracted X-rays with indices of i + k + [ = 2n, such as 110,
200, 211, and 220, are observed. Diffracted X-rays with indices of I + k + [ = 2n+1 (i.e,,
odd) do not appear. Proper indexing is possible only when we take the extinction rule

into consideration.

hkl 100|110 111 200 210 |211 220 221 310
20(obs) — 44517 | — |64.998 | — [82.198 |98.580 | — 116.285
Yodnu — 10.246 — 10.349 — 10427 10.492 — 0.551
d(obs) —  |2.034 — |1.434 — |L.172 |1.016 — 0.907
a(obs) — 12.876 2.867 — |2.870 |2.874 — 2.868

a (calc) —  |2.866 —  |2.866 —  |2.866 |2.866 — 2.866

Table 4.1 Interplanar spacing d, and sin @A value of a-Fe crystal lattice

Indexing diffracted X-rays from a completely unknown sample is considerably
more difficult. Without understanding the extinction rule, indexing is a difficult task.
However, understanding the extinction rule means that we already have an overview of
the sample crystal. This is why we rely on the trial-and-error method.
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Problem: After reading the following chapter, confirm the extinction rule for Al in an
experiment using an Al sample and the MiniFlex II.

Problem: Examine which reflections in Table 4.1 disappear and which are not observed.
To do so, draw a model of BBC crystal.



60
4.3 Change in the intensity of diffracted X-rays

Looking at the obtained Debye-Scherrer diffraction profiles (observed intensity I(26)
relative to 26) once again, in addition to that of the CsCl sample, we see that the
diffraction peaks of a certain width appear against a smooth background. It is hard to
identify the cause of the scattering that results in this background, but we can suspect
one of the following two factors:

1) the sample contains scatterers (structures) that give a smooth background;

2) the optical system of the equipment does not remove scattered X-rays from a
specific direction, due to a malfunction.

In the latter case, we need to determine the cause. In the former, however, the data
presents valuable information on scatterers within the sample. Nonetheless, since
diffraction peaks are caused by many crystals comprising the sample, we must focus on
the crystallite structures that result in diffracted X-rays in our analysis. For the time
being, we will not investigate the scatterers that result in this background, focusing
instead on our analysis on crystallite structures.

The example of a diffraction profile without a background shown in Fig. 4.1 can be
seen in X-rays diffracted from a CsCl sample. Diffracted X-rays are observed as a peak
with a certain width. To determine the reason for this width, we need to examine
whether it is attributable to the inferior resolution of the diffraction equipment. All
diffractometers have a resolution limitation; this problem cannot be avoided. The
resolution capability of the equipment used must be identified in advance. Typically,
diffracted X-rays from a material with a large grain size, such as Si and LaBs, are
measured and used as a reference. Another factor that gives rise to peak width is closely
related to the account given in Section 3.1, which explained that the condition for Bragg

reflections becomes less strict if the crystallites causing Bragg reflections are small and
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the number of lattice planes is also small. This allows the width of the diffracted X-ray
beam to be expanded. If the number of lattice planes increases, the condition becomes
more restrictive, reducing the width of the diffracted X-ray beam. The width 426 of the
diffracted X-ray beam is inversely proportional to L = Ndw of crystallites in the sample.
This represents important information on the crystallites contained in the sample.

Next, we will discuss the height of the peak of the diffracted X-ray beam and
diffraction intensity. The height of the peak of the diffracted X-ray beam and the
diffraction intensity change significantly, depending on the indices of reflection. This
phenomenon is related to the extinction rule discussed in Section 3.1 and varies in
degree, depending on the atomic arrangement in the unit cell. Details are discussed in a
later section on the crystal structure factor and extinction rule. Under conditions in
which diffraction occurs, X-rays have a peak because scattering by the N number of
lattice planes becomes coherent. The scattering amplitude at the peak position should
be N times greater than the scattering power of X-rays scattered by the lattice planes.
Since the diffraction intensity at a peak position is the square of this value, it is
proportional to N2.

Based on the above two factors, the Bragg reflection from a crystallite has a profile
in which the intensity I,(hkl) at the peak position Y2dmis proportional to the square of
the number of lattice planes in the crystallite, N?, and peak width 428is proportional to
1/N. The integral value is proportional to the square of the scattering power of the lattice
planes in the crystallite and proportional to the number N (= N?/N) of lattice planes that
cause scattering. Confirming the peak position of Debye-Scherrer diffraction in an
experiment is difficult, since the peak position often deviates. However, if we observe
the profile and obtain the integral value Ji, we can confirm our values with relatively
high accuracy. Integral values are often used when discussing the intensity of
Debye-Scherer diffraction. The integrated intensity Jw is given by the following

equation:
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J= f[hk/(ZQ) dz20 co (Ip XAZQB) /2 (4])

We must proceed carefully when implementing this integration for Debye-Scherrer
diffraction to obtain information on the crystal structure by comparison to the intensity
actually measured. Based on the necessary considerations, we can summarize the result

in the following equation:

Tkt PLp sy« A1)« NIFyi’ « A (sin O = Yrdu) (4.2)

In the above equation, Lp is the Lorentz-polarization factor, muk: is the multiplicity,
and A(w) is the absorption factor. N indicates the number of unit cells that cause
diffraction, and Frki is the crystal structure factor expressing the amplitude of the X-rays
scattered by the unit cell along direction hkl. Conditional equation A(sin Ow-Yadmi= 0)
uses a A-function to indicate the scattering angle 26 that enables the lattice plane I,k to
satisfy the Bragg condition.

Among the factors, A(sin OwY2dw = 0) indicates the Bragg condition and gives
information pertaining to the crystal lattice. This factor is discussed in Section 4.1. A
factor describing the extinction rule (dependence of diffraction intensity on the Miller
indices hkl) is called the crystal structure factor. Deciphering this factor is the key task
in analyzing crystal structures. Analysis shows which atom is located where in the unit
cell. If we can clarify the two factors above, we can say that we understand the structure
of the crystallite. The other factors in Equation 4.2 can be regarded as correction factors
used in the process to obtain the crystal structure factor from integrated reflection

intensity (relative intensity suffices). The physical implications are described below.

4 .4 Essential correction factors

4.4.1 Lorentz-polarization factor

Since X-rays are electromagnetic waves, the component of the electrical field vector
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changes each time X-rays scatter. Since the square of the scalar of the electrical field
vector is proportional to intensity, a significant change in intensity occurs, depending on
the direction of diffraction. The item that reflects this effect is called the polarization
factor. In cases of directly measured Debye-Scherrer diffracted X-rays from a powder
sample using a detector, the factor is expressed by (1 + c0s?20)/2. When X-rays are
monochromatized by a crystal before the detection, the factor is expressed by (1 + cos?20
cos?20m)/2. This applies no matter where the monochromator is located. In this equation,
20um indicates the angle of X-rays monochromatized by the monochromator. Appendix
A discusses and illustrates its significance.

When X-rays are irradiated onto a powder sample, X-rays are diffracted in a cone
shape, with a diffraction angle of 26. Using a detector, we observe only the X-rays
diffracted onto the equatorial plane. In this case, we must calculate the percentage of the
quantity of crystallites that contribute to the Bragg reflection with the indices of hkl in
question. This calculation shows that the change 1 / (sinéin26) occurs, depending on
diffraction angle 26. This is called the Lorentz factor. The integrated reflection intensity
contains two factors that depend on scattering angles, collectively called the

Lorentz-polarization factor (LP factor) and expressed by the following equation:

LP = (I+cos’26)/(sinfsin26)  (4.3)
Note: Solving this equation requires the concept of a reciprocal lattice. The

Appendix explains the concept of a reciprocal lattice and how to derive the LP factor.

4.4.2 Multiplicity

For the sake of discussion, assume that the sample crystal has a cubic crystal system.
Suppose that the lattice plane h00 causes diffraction. For this Bragg reflection, lattice
planes 0h0 and 00h should contain crystallites in an orientation causing Bragg

reflections. The corresponding probability is the same as with crystallites in the lattice
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plane 100. We can say the same for lattice planes 400, 040, and 00/ . In short, the Bragg
reflection 100 contains a total of six lattice planes. This means that the reflection 100 has
six equivalent planes. Next, consider the lattice plane /k0. The lattice planes k0, hk 0,
h kO as well as the lattice planes kh0, kh 0, kh0, khO contribute to Bragg reflection with
equal probability. This also applies to the lattice planes Ok and 0% k. In a cubic crystal
system, there are 24 equivalent lattice planes for the Bragg reflection of the above
indices. We infer that larger numbers of equivalent lattice planes mean more planes
contributing to Bragg reflection. This must be taken into consideration. The number of
equivalent lattice planes is referred to as multiplicity, and this factor is included in
integrated reflection intensity. Here, the coefficient is indicated by mw. In a cubic crystal
system, mm=48 for any hk,l. This is more easily understood if we perform the following
calculations in the proper sequence. First, calculate the number of possible equivalent
planes in the first quadrant. In the plane #,k [, if we exchange k with [ while / is fixed, we
have h,Lk. Next, in the plane ki1 in which k and / have been exchanged, there exists a
plane k,[,h in which h and [ are exchanged, with k fixed. Similarly, there is a possibility of
the plane [,h,k in the plane [,k,h in which I and / have been exchanged. We see that there
are six equivalent planes in the first quadrant. A cubic crystal system contains eight
equivalent quadrants, with 48 planes in total (6 x 8 =48). This is the maximum value.

We should also perform calculations for other crystal systems. There are 16 planes
in a tetragonal crystal system and eight planes in an orthorhombic crystal system. We
can easily make a mistake in counting the number of equivalent lattice planes in
ordinary crystal systems if we fail to consider the symmetrical property. We must

proceed carefully.

4.4.3 Absorption correction

With the B-B method, the measurement condition requires the incident angle of the

incident X-rays on a sample with a flat plate shape to be the same as the emergent angle
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of the diffracted beams. This is called the condition of symmetrical reflection. In the
following, we will look at common asymmetry and see what happens when its special
condition is for symmetrical reflection. We can examine the absorption of X-rays when
the incident X-rays with incident angle @ are diffracted by a flat-plate sample at angle
02. The absorption coefficient A(x) can be analytically obtained as shown in Appendix

C-3 and is given by the following equation:

A() = sinb,/ (sin0; + sinb,) - u (4.4)
In the B-B diffractometer, the sample plate and detector are driven by the 6-20 scan
system to maintain the condition of symmetric reflection for a plate-shaped sample at

all times. When 01= 0>, Equation 4.4 is significantly simplified as follows:

AW =%2u (4.5)

The value remains constant, unaffected by incident angle 6. However, the value of u
can change depending on the method of sample preparation, and careful attention is
required. When the value of y is large, X-rays do not penetrate deeply, leaving only the
sample surface as the valid plane. The value of A(x) is regarded as constant and
incorporated into the proportionality constant. It does not affect integrated intensity in
the slightest. If the value of u is small, however, the value of A(x) changes depending on
sample thickness. Thus, the calculations must be performed correctly. If the sample
surface is noticeably irregular, absorption varies between areas that result in smaller
scattering angles and areas that result in large scattering angles. This is yet another

factor to keep in mind.

4.5 Factors deriving from crystal structure

4.5.1 Crystal structure factors and the extinction rule

As stated earlier, the crystal structure factor F(h k) is the amplitude of X-rays scattered
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by the unit cell along direction hkl. Now, assume a crystallite with a simple unit cell in
which one atom is located at the origin (0, 0, 0) and a different atom is located at the
coordinates ri(xi, y1, z1) (see Fig. 4.2a). Consider the corresponding X-ray scattering and
diffraction phenomena. X-rays are irradiated onto the unit cell from direction si and
scattered along direction sr. The amplitude of the X-ray waves is given by F(s;, sf). The

value of F(s;, sy) can be expressed by the following equation:

E(si sp) =fo +Jrexpl(2i /2) (Si-SPr1/ (4.6)

In the Equation 4.6, fo and f: indicate the atom scattering amplitudes at positions (0,
0, 0) and (x1, y1, z1). The first term of the equation indicates the wave scattered along
direction sy and with amplitude fo from the incident X-rays entering along direction s:.
The second term indicates the addition of the scattering amplitude (f1) for an atom
positioned at (xi, y1, z1). However, since the position of that atom is shifted by ri, the
atom is displaced from the scattering wave indicated by the first term. Hence, we must
incorporate the phase difference. This is the reason for adding the phase term
exp{(2zi /A) (si - spri} to the equation. In Equation 4.6, si-sy is the vector representing the

direction of propagation of the X-rays.

N

\ Unit cell
Incident
X-ray CgK)

—

fo(K) 1 ¥p 2)

C/.'_ —* Scattering X-ray

(0, 0, 0) 5' ) 20

Fig. 4.2(a) X-ray scattering caused by unit cell
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S;, S; - unit vectors

I

S/ 1=k

|K| =2 sin 8/4

Fig. 4.2 (b) Change of X-ray direction of propagation and scattering vectors

The change of wave number vector is indicated by (si-sf)/4, which is obtained by
dividing the above value by the wavelength, as shown in Fig. 4.2b. This is called the
scattering vector and indicated by K. Given this, the phase item can be expressed easily
as exp(27iKri). Here, Kr: indicates the scalar product. Consequently, the scattering
amplitude of a unit cell containing many atoms (crystal structure factors) can generally

be expressed by the following equation:

FK) =% (K) exp2ri Kry)  (4.7)

As shown in Fig. 4.2b, the scalar component of the scattering vector K is 2 sin 6/4,
where 26 is the scattering angle. Since the scattering caused by atoms depends on
scattering angle 26 (described further below), fi(K) is used as the fraction of K to express
it. The scalar product Kr; in Equation 4.7 becomes |K| =2 sin 6/A4 = 1/dw at the location
where K satisfies the condition of Bragg reflection. Using the expression di shown in
Equation 2.3 in Chapter 2, we can simply rewrite the equation as follows: Krj = hx; +ky;+
Izj. Given Bragg reflection indices kI and the coordinates (x;, yj, zj) of the atom, we can

easily calculate the crystal structure factor using the following equation:

F(hkl) = 23 fi(sin 0/2) exp{27ri (hx; +ky; + Iz)} (4.8)
Equation 4.8 yields the scattering factor of a unit cell, or the scattering amplitude.
This is called the crystal structure factor. This factor is a physical quantity that directly

reflects the crystal structure.
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Bragg reflection is a diffracted wave resulting from the scattering and interference
of X-rays scattered by crystal lattices formed by periodically arranged unit cells. When
the number of unit cells contributing to interference is given by N, the amplitude of
Bragg reflection is a product obtained by multiplying F(h,k,1) by N. Thus, the diffraction

intensity is proportional to the square of this value and is given by N?|F(h,k,1) 2.

4.5.2 Atomic scattering factor

In the following, we discuss the scattering amplitude fj(K) of X-rays scattered by atom j.
The explanation aims to deepen our understanding that the amplitude changes
according to the scalar component (| K= sin 0/1) of the scattering vector K.

Elastic scattering (scattering without energy transfer in the process) by charged
X-ray particles is known as Thomson scattering, and the scattering amplitude is known
to be e¢?/mc?, where e indicates the electrical charge of the charged particles, m expresses
mass, and c is the speed of light. Since X-rays are electromagnetic waves, they deflect
along the direction of the electrical field vector. The change in the deflection direction
must be taken into consideration. When this effect is treated separately, Thomson
scattering becomes isotropic scattering. Isotropic scattering means scattering occurs in
all directions with equal probability, and the scattering amplitude is a constant value,
e’/mc?.

Since an atom is made up of a positively charged nucleus and the negatively
charged electrons that surround the nucleus, scattering of X-rays by an atom is
regarded as Thomson scattering from a structure configured with such charged
particles. However, since the mass m of the nucleus is substantially greater than that of
the electrons, the Thomson scattering factor of the scattering caused by the nucleus is so
small that it can be ignored. As a result, only Thomson scattering due to the distribution
p(r) of the electrons around the nucleus is considered and regarded as the atomic

scattering factor. Hence, it can be calculated by multiplying o(r) by the phase item
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exp{2mKr} and by integrating the product.

FiK) = [ py(t) exp{27iKrdr 4.9)

This equation without Thomson scattering factor e?’/mc? indicates the scattering
amplitude attributable to the atomic structure, or the atomic structure factor. In the
1930s, various charge distribution patterns were hypothesized and reliable calculated
values reported. Recommended values are listed in the International Tables for
Crystallography Vol. III p. 201 (1960) and International Tables for Crystallography C (1990)
published by the International Union of Crystallography. Please refer to these reference

materials.
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Fig. 4.3 Atomic scattering factors
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In Fig. 4.3, atomic scattering factors for several elements including Cs and CI are
plotted relative to sin &/A. As we can see, sin 01 is expressed by a curve that shows the
gradual attenuation of the scattering amplitude when the scattering angle increases
from 0. This means this scattering is “strong in the forward direction and weak in the
backward direction” (characteristic of forward scattering). In the previous chapter,
diffracted images resulting from a number of different materials were shown. In those
examples, the intensity of diffracted X-rays became significantly weaker when the
scattering angle increased. Now we can understand that this phenomenon stemmed
from the above fact.

The table of atomic scattering factors is immense, and using the table to calculate
crystal structure factors is inconvenient. An equation that uses several Gaussian
functions to approximate the above curve has been proposed?.* The following is a

commonly used equation that uses four Gaussian functions for approximation.

f(sing/1)= z; A, exp{— a,(sin 49//1)2} (4.10)

The constant A;j a; (j = 1, ...4) varies for each element and can be obtained from the

table. Table 4.2 shows some examples.

Problem: By referring to Table 4.2, plot f(siné/4) in a graph.

Atom al bl a2 b2 a3 b3 a4 b4
(0] 3.0485 13.2771 2.2868 5.7011 1.5463 0.3239 0.8670 [ 32.9089
Na 4.7626 3.2850 3.1736 8.8422 1.2674 0.3136 1.1128 | 129.4240
Mg 5.4204 2.8275 2.1735 79.2611 1.2269 0.3808 2.3073 7.1937
Si 6.2915 2.4386 3.0353 32.3337 1.9891 0.6785 1.5410 [ 81.6937
Cl 11.4604 0.0104 7.1964 1.1662 6.2556 18.5194 1.6455 | 47.7784
K 8.2186 12.7949 7.4398 0.7748 1.0519 ( 213.1870 0.8659 | 41.6841
Cs 20.3892 3.5690 19.1062 0.3107 10.6620 24.3879 1.4953 | 213.9040

Table 4.2 Table of constants of atomic scattering factors approximated using two Gaussian functions

3 References: V. Vand, P. F. Eiland & R Pepinsky: Acta Cryst. 10 (1957) 303; J. B. Forsyth & M. Wells: Acta Cryst.
12 (1959) 412
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A few items are worth noting regarding atomic scattering factors. One is that when
the value sin(@/ 1) becomes 0, the value of the scattering factor equals the atomic number
Z due to being in a fully charged state, as we see when we substitute K = 0 into
Equation 4.9. When atoms are ionized, the total number of electrons Z increases by only
m, as shown by Z = m, and this effect takes place on the base-angle side of the scattering
factor. This calculated value is obtained from the computation based on the assumption
that the electron distributions in all atoms are spherical. If atoms are bonded with
covalent bonds, the electron distribution is distorted. In the case of light elements in
particular, the percentage of bonded electrons is high in all electrons. The effect of the
distortion is significant, but this effect is not reflected in the table. Anisotropic atomic
scattering factor is sometimes involved. Refer to the following reference materials for
turther discussion of this topic.

[Include a list of reference materials]

4.5.3 Temperature factor

The temperature factor, Tj(siné/1), is called the Debye-Waller factor. For a discussion of
how this value is obtained, refer to Appendix B7. The following discussion focuses on
the necessity of the temperature factor and presents some equations.

In Equation 4.7, used to calculate the crystal structure factor, and Equation 4.8, the
position of the atom is assumed to be #; (xi, y;, zi). In actual crystals, however, thermal
oscillations of the lattices cause entire crystal lattices to oscillate, resulting in changes
over time. The square of the amplitude of oscillation increases in proportion to absolute
temperature T in a harmonic approximation range. The degree of oscillation varies
according to the measurement temperature. Thus, the position of an atom in a unit cell
is written rj (t)=<ri>+ uj(t), reflecting the change occurring over time t. When this is
substituted into the equation for the structure factor, we obtain the function F( hkl, t),

which indicates that the structure factor also changes with time. How large is this
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change? Based on lattice oscillations, the change is on the order of picoseconds. In
comparison, even the shortest time for the observation of scattered X-rays is on the
order of milliseconds. The observation result is an average of values that varies over a
very long period of time. The structure of crystals observed using X-ray diffraction is,
therefore, a space average and a time average. Time average and space average are the

same, and the average structure factor can be expressed by the following equation:

<F(K)> =% f(K)Ti(K) exp(2ri K<r>) (4.11)

In Equation 4.11, < > indicates that a statistical average is used, while <rj> indicates
the equilibrium position of the j-atom. Tj(K) is a correction item for the thermal
oscillation relating to the atomic scattering factor fi(K). This is called the temperature
factor. Using isotropic approximation that assumes that the amplitude of thermal
oscillation of an atom is the same in any direction, we can obtain Tj(sin @/4) with the

following equation:

Ty(sin@/2) = exp{- 8722<uj2>(sin9//1)2} (4.12)
87<u’>=B; (4.13)

Here, uj indicates the amount of displacement from the average atom position, <>,
in the unit cell occupied by the j-atom due to thermal oscillation. <u?> is a thermal
average of the square of the “displacement.” There are several ways to calculate the
thermal average of <u;> associated with the thermal oscillation of the lattices. However,
in the range in which we can use an approximation of harmonic potential, this can be
treated as the thermal oscillation of an atom of mass m in the potential expressed by the
quadratic curve shown in Fig. 4.3a. This value changes depending on the measured
temperature, but is generally proportional to absolute temperature T in a region where
statistical mechanics allows for high-temperature approximation. The value B; obtained

by multiplying the above average value by 87 is called the temperature parameter.
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This parameter must be determined together with the atomic coordinates in crystal
structure analysis. If we take a closer look at Equation 4.12, we observe a Gaussian
function. An increase in the value of sin@/4 further reduces the atomic scattering factor,
since the above factor is multiplied by the atomic scattering factor. The degree of this
decrease becomes greater when <u?> is large. As shown in Fig. 4.4, in actual space,
atoms with the electron distribution p(r) are placed in a potential expressed by the
quadratic function, and thermal oscillations take place near the equilibrium position <r;>.
Thus, the electron distribution is apparently in a spread condition, as represented by
p(r).

Potential

‘:Uﬁ} ~T

@~

<>y Atom displacement

m ! Electron density
—* r — r

pr) —— PN

Electron distribution  Electron distribution widened
in atom by thermal oscillation

Fig. 4.4 Spreading of an atomic charge distribution due to thermal oscillation of lattices
Ordinarily, the value of B;is large for crystals with a low melting point and small for
crystals with high melting points. If the value of B; obtained in a structural analysis is
abnormally large or small, an underlying factor may be responsible. For example, the
absorption coefficient may have changed due to the scattering angle; or the irradiated
region may have changed due to the scattering angle. Careful attention is in order.
The Gaussian function in Equation 4.12 is isotropic. This is because the equation

was developed based on the assumption that the thermal oscillation of atoms is
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isotropic. However, atoms in a crystal are not necessarily in an isotropic environment.
In such cases, we must derive an anisotropic temperature factor. This booklet does not
delve further into this topic. For a discussion of the thermal oscillation of atoms in an
anisotropic potential, refer to the article: Makoto Sakata, Jinpei Harada, Journal of the

Crystallographic Society of Japan 22 (1980) 387-403.

4.6 Simulation of diffraction intensity

Measurement of the diffraction 20 at which Debye-Scherrer diffracted X-rays are
observed provides information on the crystal system. We can focus on the change in
intensity of the diffracted X-rays to obtain information on the crystal structure.
Discussed below are specific procedures for analysis using the value observed from
CsCL

The second column of Table 4.3 gives the values of the diffraction angle 2&obs) at
which diffracted X-rays are observed. The interplanar spacing d as calculated from the
diffraction angle is also indicated. The sample is the familiar CsCl, which is cubic. The
crystal lattices are indexed based on this assumption. The indices are given in the fifth
column of the table. The seventh column shows the lattice constants a(obs) calculated
from the diffraction angle 2éobs) based on these indices. All obtained values should be
identical to the lattice constant. To see their deviations, we plot a(obs) in relation to the
observation angle 268 (Fig. 4.5a). Clearly, the value measured with diffracted rays on the
base-angle side differs significantly from the value obtained from the observation on the
high-angle side. Based on the equation for Bragg reflection, we see that using diffracted
X-rays on the base-angle side produces large errors. For precision measurements of the
lattice constant, we need to use the diffracted rays on the high-angle side.

The extinction rule seen with Bragg reflection becomes clearer if we calculate the

crystal structure factor. In the discussion about extinction rule in Section 3.2, we have
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noted that if we know the crystal structure, we can calculate the crystal structure factor
and determine what extinction rule applies. Using CsCl as an example, we will
demonstrate that the above is true and try to deepen our understanding of the
integrated reflection intensity Equation 4.2.

As is well known, CsCl is a cubic crystal with a molecule in each unit cell and Cs

and Cl atoms located at the following coordinates:

Cs: (0,0,0)  Cl: (% %, 1)
We can substitute these into Equation 4.8. Given atomic scattering factors fcs and fa,

we thereby obtain the following equation:

F(hkl) = fos + faexp{mi (h + k+ 1)} (4.12)
This gives the crystal structure factor for CsCl. If we plug h + k + [ = 2n into this
equation, exp{zi ( h+k+1) becomes 1. If we plug h + k + [ = 2n+1 into this equation, exp{

( h+k+1) becomes —1. Thus, we obtain the following extinction rule:

When h + k + 1 = 2n: F(hk1) = fes + for (4.13 a)
Whenh +k +1=2n+1: Fhkl) =fo; — for (4.13b)

For indices h,k I, the phase of the diffracted X-rays for which & + k + [ is an even
number will be the same for X-rays scattered by Cs and Cl atoms; the diffracted X-rays
are mutually reinforcing. The scattering amplitude or structure factor becomes fcs+ fa.
On the other hand, the phase of diffracted X-rays for which & + k + [ is an odd number
will be opposite, and the diffracted X-rays are mutually attenuating. The structure
factor becomes fcs — fa. Since intensity is proportional to the square of this value, this

tendency demonstrates that the extinction rule shown above is valid.
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No. (20 deg)| Mmas d hkl | h2+K%+1 a ts | f1 F m (P)| Tal |mas/kal
=m FRLP)
1] 21534 2656] 4.123 100 1 4.1233] 49.3] 149 ] 344 6l 472 3424 0.78
2] 30.676 | 10000 ] 2.912 110 2] 4.1184 ] 458] 12.9] 588 12] 23.6 ] 1000.0 1.00
3l 377721 1459 2.380 111 3l 41219 432 11.7] 31.6 8l 159 128.9 1.13
4] 43903 1238 2.061 200 4] 412121 41.1] 10.8] 51.9 6] 12.0] 1974 0.63
5] 49.398 | 1294 | 1.843 210 5] 4.1221] 39.5 | 10.1 | 294 24 9.6 | 2034 0.64
6] 54507 [ 3364 ] 1.682 211 6] 4.1204 | 380 ] 9.6 476 24] 81| 4483 0.75
7] 63.857 82.0 | 1.457 220 8] 4.1197 | 35.7] 8.8 446 12 62] 149.7 0.55
8| 68.230 604 | 1.373 300 9] 4.1203 ] 34.8| 8.6 26.2 6] 55| 1164 0.52
68.230 1.373 221 9] 4.1203 | 34.8] 8.6 262 24] 55
9] 72478 89.2 | 1.303 310 10 4.1206 | 33.9] 8.3 423 24 50| 219.8 0.41
10] 76.619 268 | 1.243 311 11] 4.1212133.1] 8.1] 25.0 24] 4.6 70.8 0.38
11{ 80.685 30.7 | 1.190 222 12 4.1220] 3241 8.0 404 8l 4.3 57.2 0.54
12| 84.718 20.7 | 1.143 320 13] 412211 31.7] 7.8 239 24 4.0 56.4 0.37
13 88.724 | 112.1] 1.102 321 14] 4.1222 1 31.1] 7.7] 38.8 48] 3.8 2795 0.40
14| 96.747 104 | 1.031 400 16 412211 299 741 373 6] 3.5 29.5 0.35
15{100.787 2721 1.000 410 17] 4.1224 ] 294 7.3] 22.1 24] 3.3 79.5 0.34
100.787 1.000 322 17 412241 294 73] 221 24| 3.3
16{104.889 469 0972 411 18] 4.1224 ] 289 7.2] 36.1 24] 32| 1545 0.30
104.889 0.972 330 18] 4.1224]1 289 721 36.1 12 3.2
17{109.061 136 0946 331 19 412271 2841 7.1 213 24| 3.2 35.0 0.39
18[113.364 314 ] 0.922 420 20| 4.1225 | 279 7.0/ 349 24| 3.1 92.9 0.34
19{117.802 206 | 0.900 421 21 41225 275 6.9 206 48] 3.1 64.0 0.32

Table 4.3 Extinction rule for CsCl and comparison of calculated integrated intensity values and actual
measurements

We can make our calculations more concrete. The tenth row of Table 4.3 shows the
results of calculations to obtain the crystal structure factor for CsCl for the indices hkl,
Fua (calc), by substituting a numeric figure for the atomic scattering factor. Fig. 4.5b is a
graph produced by plotting Fu (calc) in relation to the diffraction angle 20. By looking
at these results, we can confirm the extinction rule of Equation 4.13a and Equation
4.13a. The 13th row of Table 4.3 gives the integrated intensity Jm (calc) obtained by
multiplying Fu: by itself and then multiplying the result by the correction items,
calculated multiplicity mm and the Lr factor. Since this value can be compared to actual
measured values, its ratio to Jui(obs)/[m (calc) is shown in the 14th row of the table.

Fig. 4.5c is a graph produced by plotting Jwi(obs)/Jm (calc) for 20 of each diffracted
beam. If the calculated integrated intensity is consistent with actual measurements, it
should be constant, regardless of the relationship to 20. While diffracted X-rays
demonstrate some fluctuations, they tend to decrease with 20, as indicated by the guide

line in the figure. This means that any overestimates of the calculated value are likely to
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increase when the value of 26 increases. In the calculations above, while the results do
not correspond systematically to actual measurements, this discrepancy is easily
attributable to the omission of the temperature factor in the above discussion.
Introducing the temperature factor will improve accuracy.

The atoms and molecules in a crystal are always oscillating due to crystal lattice
oscillations, resulting in continuous fluctuations. Within a harmonic approximation
range, the degree of fluctuation increases in proportion to temperature. The effects of
thermal oscillation cannot be ignored even at room temperature and attenuate the
intensity of diffracted rays of high-order indices.

In an expanded simulation example, if the locations of Cs and Cl atoms are also
occupied by Fe atoms, the structure becomes a body-centered cubic lattice. In this case,
diffracted X-rays for which / + k + [ is an even number appear and the value becomes
2fr.. However, diffracted X-rays for which h + k + [ is an odd number become 0 and
disappear completely. This is consistent with the extinction rule for the BCC crystal
structure. Check Fig. 4.1 to verify that the diffraction profile indicates the phenomena

mentioned above.
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Fig. 4.5 20 versus J(Obs)/J(Calc). As the value of 26 increases, the systematic
discrepancy of J(Obs)/J(Calc) becomes more pronounced.



Chapter 5: ldentification and Characterization
of Polycrystalline Materials by
X-Ray Diffraction

X-ray diffractometers are used for crystal structure analysis; that is,
to examine unknown materials at the atomic level and determine
their crystal structures. Extensive past research has examined and
identified the crystal structures of many materials. The resultant
data has been compiled and stored by several organizations, giving
us access to extensive databases. Comparing this data to the
diffracted X-rays obtained from an unknown material lets us
determine what crystallites a sample contains and makes it
possible to subject a sample to structural analysis as part of a
process we call identification. The following chapter discusses the
procedures involved in this process and how they can be used to
characterize the state of a material.

5.1 Identification (qualitative analysis)

In qualitative analysis by X-ray diffraction, we compare the diffraction patterns
obtained from an unknown material against the diffraction patterns of known materials.
If the measured data contains diffraction patterns previously recorded for known
materials, the sample is determined to contain these materials. Due to the technique
used, qualitative analysis based on the powder X-ray diffraction method is called
identification. This term has a unique meaning in the field of X-ray diffraction. The
accuracy of the analysis we perform depends significantly on the reliability of the
diffraction profiles for known materials used for comparison. The database most often
used is called the ICDD (International Center for Diffraction Data) database. The
International Center for Diffraction Data began issuing ICDD cards in the 1980s based
on compiled data. As of May 2010, the ICDD provides PDF-2 (Powder Diffraction File -
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2) and PDF-4 on CD-ROM. These files are generally used by research scientists and
similar individuals. However, for analyses of limited scope, we can prepare structural
data for known substances through our own calculations. We can then compare the
measured data to our calculations to perform identification.

PDEF-2 2009 is a database primarily of inorganic materials, containing information
on interplanar spacing (d-values), relative intensity, Miller indices, chemical formulas,
compound names, mineral names, structural formulas, crystal systems, melting points,
density, and so forth. However, the CD-ROM supplied by the ICDD lacks a search
function. Users can elect to purchase DDview, an application offered by the ICDD, or
obtain other equivalent software. PDF-4 consists of three parts: a) PDF-4 Inorganic 2009
(including minerals, totaling 291,440 data items); b) PDF-Organics 2010 (406,733 data
items); and c) PDF/Mineral 2009 (34,212 data items). PDF-4 includes DDview and

removes the need for a separate search program.

Note that the MiniFlex Il comes with a search program developed by Rigaku, called PDXL.

5.1.1 Information provided on the ICDD cards

Fig. 5.1 shows the ICDD card for a mineral called anatase, a form of titanium oxide
(TiOz2). The number at the upper left corner of the card, 21-1272, is the card number for
TiOz. The leftmost figure in the first row indicates the d-value of the reflection of
maximum intensity. Since this reflection intensity is used as a reference value, relative
intensity I/Ii has a value of 100. The d-values for three strong reflections and their
intensity ratios (I/I), respectively, follow these figures. To chemical formula (TiO2) and
mineral name (Anatase) are indicated. The symbol in the upper right corner (*, i, C, or
O) indicates the quality of the data. The symbol * indicates that the data is reliable. The

letter “i” indicates that the intensity of diffracted X-rays has been reviewed and found

to be less accurate than data with *. The letter “C” indicates the data is calculated. The
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symbol “O” indicates the data is unreliable. If no symbol or letter appears at this
location, the data has not been evaluated. Beneath this information, the card gives
measurement conditions, crystal data, optical data, and data sources to the left, and

observed d-values, intensity ratios, and Miller indices hkl to the right.
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% . )
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2o 3.7852 bo te RS54 1,699 20 | 108 sseal & | w00
S - 1mie. P Crystal data 5. 1.6865| 20 | 211 L5246/ <2 207
= 1.40501 4 | =2rx .9182| 2 525
1.4808| 14 ' - o 1t
ca LY g I d-value, intensity, hkl 2
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am.cﬂm*m-:d. to rutile (tetragonal) 1.1408 4 312 L7997 s 429
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Fig. 5.1 ICDD card. Example of card 21-1272 TiO, (Anatase) obtained from a data search

5.1.2 Search based on ICDD cards

The first step in identification is to find the d-value of the strongest reflection. Materials
are divided into 45 groups, arranged from the group with the largest d-value to the
group with the smallest d-value. Within the selected group, we compare the d-values
for three reflections and their intensity ratios to narrow our search. After selecting a
number of candidates, we compare the d-value and intensity ratio of the observed
reflections in detail to those of the candidates to identify the sample material.

The number of effective digits is three or four. An angle accuracy of 0.050 to 0.1° is
sufficient. The intensity value may be the intensity at the peak position (peak intensity),

since the full width at half maximum can be regarded as proportional to the integrated
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intensity, if all reflections are equal. Described below are specific search procedures
using this card 21-1272 from Fig 5.1.
(1) Pre-processing (peak search)

For qualitative analysis, we need to calculate the interplanar spacing (d-value)
and relative intensity of the peak. Before performing a peak search, we have to
eliminate the background and smooth the data. This is done by entering processing
conditions. In doing this, we must set an accurate position for the background and
avoid excessive smoothing. To locate and identify trace components, we must also
avoid dropping small peaks and exaggerating other peaks.

(2) Primary search

We perform a primary search to list candidate compounds from the ICDD file on
the hard disk. Since this search examines tens of thousands of ICDD cards, specifying
the appropriate search conditions is critical. This means specifying the ICDD card file
(including sub-files), contained elements, and so forth. The search will return
compounds meeting the search conditions entered here. The search file and error
windows are discussed in detail below.

a. Search file: Select the inorganic materials file if the sample is an inorganic
compound and the organic materials file if the sample is an organic compound.
Subfiles include minerals, metals and alloys, common phase, corrosive phase,
forensic pathology phase, educational packages, cement phase, explosive phase,
polymer materials, zeolite patterns, NBS patterns, superconducting materials, and
pigment/paint files.

b. Error window: Depending on the state of the sample (e.g. eccentricity,
solid/solution), the interplanar spacing shown may not perfectly match the standard
data. The observed peak position is given a margin to allow judgment of a match
with standard data. The extent of this margin is called the error window.

(3) Secondary search
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The standard data for the compounds in the primary search results is
superimposed on patterns obtained from the sample on the PC screen. (Compare the
d-value and relative intensity in the entire diffraction profile obtained against the
standard data to check for correspondence.) If the standard data overlaps the
measured profile almost exactly, the sample can be identified. Compare the
diffraction profiles while referring to the coefficient of reliability. If you come across
unidentified diffracted X-rays, identify them in the same way. Repeat this

identification process until no diffracted X-rays remain to be examined.
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Fig. 5.2 Example of identification. The result of identification using the X-ray diffraction
data (red profile) obtained from a compound of two types of TiO,, anatase and rutile, and
ICDD data; all observed reflections can be explained as involving either anatase or rutile.

As an example, Fig. 5.2 shows the observed data (red profile) of a sample, a
compound of anatase and rutile, obtained with the MiniFlex II. An ICDD search
produced anatase and rutile as results. The data for these materials explains all
observed reflections. We can obtain the coefficient of reliability using the d-value,
relative intensity, and the number of matching peaks. The larger the coefficient, the

more reliable the analysis. Keep in mind that this value is a benchmark. The final
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judgment must be made by humans. Let’s see how closely the angle and intensity in the
obtained data match the data registered in the ICDD file. Fig. 5.3 shows the results of a

comparison to anatase. The degree of correspondence here is acceptable.
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Fig. 5.3 Comparison of anatase data (thick green line) registered in ICDD and actual measurement (red)

5.1.3 Cautionary note for the identification process

During the identification process, the d-value and I/Ii of the diffracted X-ray from the
sample may differ slightly from the ICDD data. The factors leading to this discrepancy
fall into three categories: a) causes originating from improper adjustment of equipment
and sample; b) causes stemming from characteristics specific to the sample; and c)
causes attributable to poor reliability of the ICDD data.
a) Adjustment of the equipment and sample
(1) Needless to say, the MiniFlex II must be serviced and maintained. If the
goniometer’s zero point deviates by angle A20, for example, all diffracted X-rays will
shift by A26. Such errors are due to mechanical misalignments.
(2) In the results of measurements based on the B-B method, the peak profile

becomes asymmetrical. With 26 = 90° at the center, reflections appearing on the
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low-angle side are sloped on the base-angle side, while reflections appearing on the
high-angle side are sloped on the high-angle side. If this umbrella effect is
problematic, reduce the divergence angle of the incident optical system in the vertical
direction to mitigate the effect.

(3) I a K filter is used in the measurement, high-intensity diffracted X-rays will
be accompanied by diffracted K/ rays, so caution is in order. This problem can be
avoided by placing an analyzing crystal (monochromator) in front of the detector.

(4) Most diffractometers, including the MiniFlex II, lack sufficient resolution to
distinguish between the Kou and Koz contained in CuKa rays. If the average grain
diameter of crystallites in the sample is large and the level of integrity is high,
diffracted X-rays of Kou and Koz may separate on the high-angle side and appear as
independent diffracted X-rays. Again, caution is in order.

(5) If the X-ray tube used is old and the surface of the target is contaminated,
characteristic X-rays attributable to impurities in the contamination may mix. If the
filament material, tungsten (W), adheres to the target, WLo (= 1.476 A) rays will
appear. Note that the detected wavelength will be between CuKa rays and CuKf
rays.

(6) Note that the observed data may also include scattering rays caused by the
sample holder and equipment cover.

b) Characteristics specific to the sample

When we perform X-ray diffraction with a powder crystal sample, the diffraction

intensity ratio can change depending on the sample preparation method or

characteristics specific to the sample, contributing to abnormalities in the profile of the

diffracted X-rays and impeding proper identification of the sample. However,

investigating these causes involves analyzing the state of the sample. Actual cases are

listed below as reference examples.

(1) In a powder sample with large grain diameter (approx. 10 pm or larger), the
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cone-shaped Debye-Scherrer diffracted X-rays (see Fig. 3.4) become narrower,
causing intensity irregularities and degrading the reproducibility of the relative
intensity. In certain cases, relative intensity I/I: can vary by several tens of percent. We
can minimize this effect by grinding the sample so that the grain diameter is less than
approximately 10 um (until particles cannot be felt by a fingertip) or by rotating the
sample around the axis perpendicular to the sample surface.

(2) If the grain diameter is 0.1 um or smaller, on the other hand, the
Debye-Scherrer diffracted X-rays become wider and tend to overlap on the
high-angle side, making identification difficult.

(3) In a powder sample with needle-shaped crystal grains or flat-plate-shaped
crystal grains, certain diffracted X-rays (for example, diffracted X-rays from the plane
(001) in the case of crystal grains that are elongated along the c axis) will exhibit
sharp edges along the axis of width, but diffracted X-rays in the perpendicular
direction will expand in width.

(4) The crystal grains in the sample may be oriented preferably. Relative intensity
can vary significantly, depending on the degree of preferred orientation. In extreme
cases, we observe reflections of only specific indices. This can occur in crystal
samples with a layered structure, such as clay minerals and graphite powder, and in
foils and fibrous materials. This can also be a problem specific to a certain sample.

(5) In certain cases, a material of the same structure with a slightly different
lattice constant may be mixed in. This occurs when the impurities remain in a sample
that becomes a solid solution. For example, the lattice constant of BaTiOs is 3.97 A.
However, a solid solution of SrTiOs with a = 3.91 A will result in locally irregular
composition, causing the diffracted X-rays to separate. In certain cases, the shape of
the unit cell may be slightly distorted, degrading symmetry. This can be seen in
materials with a perovskite structure (such as BaTiOs) and intermetallic compounds.

In these cases, the profile of the diffracted rays becomes noticeably asymmetrical. For
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samples with imperfect solid solutions of CaO in MnO, the profiles exhibit slopes on
the high-angle side. These problems can also be specific to a certain sample.

(6) In samples with stacking faults (e.g., graphite, talc), the profile of the
diffracted X-rays from an irregular surface will exhibit a slope on the high-angle side.

c) Problems attributable to unreliable ICDD data

(1) Much of the data obtained before 1950 is based on measurements obtained by
the photographic method, which is sometimes associated with unreliable analysis
results. Although old data has been replaced with new data as it becomes available,
the ICDD data may still contain older, unreliable data.

(2) If we use X-rays of a wavelength different from the data indicated on the
ICDD card to analyze an unknown sample, relative intensity may differ from the

ICDD data. Try to use the appropriate X-rays.

5.1.4 Focus on characteristic diffracted X-rays

When performing qualitative analysis of crystals that generate characteristic diffracted
X-rays, such as clay minerals!” and rock minerals®, we need to focus on characteristic
diffracted X-rays to determine the materials included. Shown below is an example.
When X-rays of the CuKo wavelength are used to measure a sample of a-quartz
(S5i02) powder, we observe strong diffracted X-rays at diffraction angles of 20.70 and
26.5° (26). We observe a quintuplet at 68°. Fig. 5.4 shows the quintuplet in the
diffraction profile. This diffraction pattern is unique to a-quartz and is not found with
other materials. If we see this diffracted X-ray pattern, we can conclude that the sample
contains a-quartz. Here, we examine the diffraction profile of the sample being
analyzed, identify characteristic features, and identify materials using these features as
a guide. In the case of a-quartz, however, the intensity of the quintuplet is weak, so we

need to perform a careful inspection.
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Fig. 5.4 Characteristic diffraction profile of a-quartz, with quintuplet (26 = approx. 68°).
This is called a “five finger” pattern.

5.1.5 Identifying organic compounds

Despite the abundance of organic compounds, there are fewer registered ICDD cards
for organic compounds than for inorganic compounds. This means the systematic
identification technique used for inorganic compounds such as clay minerals, rock
minerals, and metals is less suitable for the identification of organic compounds. Since
organic compounds can be characterized by unique molecular shapes, their diffraction
patterns are often complex. Nonetheless, if the diffracted X-rays of homologous
compounds and allied compounds of the organic compound to be identified are
available as reference information, we can perform qualitative analysis (identification)

in the same way as for inorganic compounds.

5.2 Characterization of the state of polycrystalline materials

5.2.1 Crystallized state and amorphous state

Substances occur in three states: vapor, liquid, or solid. At the atomic level, the solid
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state can be further divided into two states: amorphous and crystalline. The structural
differences between these states are obvious when you inspect Fig. 5.5. These diagrams
were created based on the famous two-dimensional diagrams of quartz and silica glass
developed by W.H. Zachariasen in 1932. Both compounds have the same chemical
symbol, SiOz. Quartz is in a crystallized state; the Si-atoms, represented by small black
circles, are covalently linked via oxygen atoms, indicated by red circles, in an orderly
pattern. In contrast, in silica glass, the Si-atoms are covalently linked via oxygen atoms,
but their arrangement lacks regularity. The amorphous state was initially recognized as
a structure unique to glass, but has since been identified in pure silicon and in alloys of
certain compositions. Methods for manufacturing these substances in the amorphous

state have been established for various applications that require its superior uniformity.

Fig. 5.5 Crystallized (quartz) and amorphous (silica glass) states of SiO,. Silicon atoms
are represented by black circles and oxygen atoms by red.

The preceding addressed the morphology of solids. The results in Fig. 5.5 were
obtained by analyzing X-ray diffraction patterns, and the differences are obvious. Fig.

5.6 shows the results of analysis using the MiniFlex II. In the crystallized state,
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represented by the red pattern, sharp diffracted X-rays enable plane indexing. In
comparison, we see no sharp peak in the diffraction pattern for silica glass (blue
pattern), only a broad crest near a 26 value of 28°. This crest is attributable to the
interference of scattered X-rays from Si atoms and nearby O atoms. The disorderly
structure, lacking the long periodical continuity of Si-O bonds, results in the broad

spread of the diffracted X-rays.
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Fig. 5.6 Diffraction profiles for quartz powder (red) and silica glass (blue)

We can increase the temperature to liquefy a sample of quartz or silica glass, and
observe the diffraction profile obtained from the sample in liquefied condition. The
resulting diffraction pattern is virtually identical to that of the sample in the amorphous
state. We infer that samples in the liquid and amorphous states have the same
microstructure, since they yield the same diffraction patterns. The difference between
the two states is fluidity: In the liquid state, atoms and molecules are in a state of flux; in
the amorphous state, their fluidity is extremely low. However, even with such extremely

low fluidity, due to the fluidity of atoms and molecules in this configuration, elastic
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deformation will occur if we apply a force to silica glass for an extended period. The key
aspect here is that the crystallized and amorphous states occur at ordinary temperatures
and pressure, although their microstructures can appear quite different at first glance.
In the crystallized state, atoms and molecules are arranged in an orderly pattern. In the
amorphous state, they are arranged randomly, aside from the constraint imposed by
interatomic distances to the closest atom. According to solid state physics, the free
energy is more or less equal for the two states.

This is better understood if we compare the latent heat of vaporization used to
break up atoms and molecules with the latent heat of liquefaction. A material in a
crystallized state heated under constant pressure will vaporize. Suppose that the latent
heat used to increase the temperature to achieve liquefaction is Lm and that the latent
heat used to further increase the temperature to achieve vaporization is Lv. For most
materials, the latent heat of fusion is significantly less than the latent heat of liquefaction.
The ratio Lw/Lv is about 0.03 to 0.04, whether the material is a metallic or ionic crystal.
One would suppose, then, that the structural difference (the change from an orderly
configuration to the disorderly state) between solid and liquid states is very small and
that most of the latent heat of liquefaction is used to achieve a fluid configuration of
atoms and molecules.

We used silica glass above to explain the amorphous state. In the structures of
polymer resins called plastics, while crystallization may appear here and there, the

overall configuration remains amorphous.

5.2.2 Various states of crystallization

Using SiO:2 as an example, we showed above that the solid state can be crystalline or
amorphous. Using the X-ray diffraction method, we can classify the crystalline state into
the six types shown in Fig. 5.7. First, we can classify the crystallized state as a single

crystal state or polycrystalline state. The materials discussed in this booklet are in a
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polycrystalline state. A single crystal, on the other hand, can be understood as a
crystallite in a polycrystalline material. To see this, picture an overgrown crystallite. We
can also picture natural gems like quartz, emerald, or diamond to visualize the single
crystal state. Single crystals can be further divided into perfect single crystals and
mosaic single crystals if we perform our investigations with the X-ray diffraction
method. Although the main topic here is the method of characterizing materials in the
polycrystalline state, we will take a brief detour to address the topic of materials in the

single crystal state.

Single (1) Perfect single crystal
-~ crystal state

{2) Mosaic single crystal

Crystallized y

[ ctate (3) Crystallite size is sufficiently

large; two crystallite
J orientations are ocbserved.

Polycrystalline

Y

state (4) Crystallite size is distributed:
Solid state one orderly orientation can be
observed.

{5) Crystallite size is distributed, the
orientation is random.

* Amorphous state -~ = reeeeenneienes (6) Crystallite size is 1 nm or
smaller, and the orientation is

random.

Fig. 5.7 Possible solid states

For X-ray diffraction, a narrow, monochromatized, parallel X-ray beam is created
and irradiated so that the crystal lattice plane satisfies the Bragg condition. The
diffracted X-rays are then observed by a detector set in the direction of diffraction. In
this condition, we observe the Bragg reflection while the crystal is rotated little by little.
This observation method is called rocking curve measurement. If the sample has

minimal lattice defects and the crystals feature an ideal periodic structure, the full
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width at half maximum (FWHM) will be an angle of less than a dozen arcseconds. This
crystal is called a perfect single crystal. We can calculate FWHM by applying dynamic
diffraction theory to perfect single crystals. Crystals can be characterized by
comparing measured values to calculated values. If the crystal structure contains
numerous lattice defects, the FWHM becomes wide, varying from several arcminutes to
several tens of arcminutes. This crystallized state is called a mosaic crystal ((2) in Fig.
5.7). The corresponding FWHM is used as a reference to express the integrity of a single
crystal. In short, FWHM is an index of crystal growth techniques. Ideal crystals
currently known include Si, quartz, and ice. The compound semiconductor crystals
used in the semiconductor industry have been gradually improved over time.

On the other hand, samples that generate Debye-Scherrer diffraction patterns are
said to be in a polycrystalline state. Crystals of common metal materials and ceramics
are in this state. If we take a piece of iron or aluminum, polish the surface, remove the
section deformed during processing with a corrosive liquid, then observe it under an
optical microscope, we will see aggregates of grains of various shapes measuring
several micrometers or less. If we observe those grains with an electron microscope like
SEM or TEM, we will see that certain grains are composed of several small crystals
(called crystallites), while others are single crystals. The condition shown in Fig. 5.7 (5)
is the polycrystalline state that results in a uniform Debye-Scherrer diffraction profile.
As explained in Chapter 4, the integrated reflection intensity indicated by the
diffraction profile can be described with calculations based on diffraction theory. This
diffraction theory is equivalent to the Born approximation, a well-known scattering
theory. This is called the kinematical diffraction theory to distinguish it from the
dynamic diffraction theory.

We will now focus on the polycrystalline state (6). Imagine a condition (5) in which
the average size of the crystal grains is 10 nm or less. In general, if the size of the crystal

grains decreases, the number of atoms on the surface will increase sharply relative to
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the number of all atoms comprising the crystal grain. For example, when the grain size
reaches 1 nm, the value becomes 100%, meaning that all constituent atoms become part
of the surface. Since the percentage of atoms on the surface increases, we can no longer
define a lattice plane. The Debye-Scherrer diffracted X-rays forming the diffraction
profile will have a wider ring and overlap the adjacent ring. This is the diffraction
profile of an amorphous material. The condition shown in Fig. 5.7 (6) indicates the
amorphous state.

Consider the condition described in (4) using the condition indicated in Fig. 5.7 (5)
as a reference. In the polycrystalline state described in (5), we can define an average
diameter for the crystal grains around which a certain range of various diameters is
observed, and crystal grains are oriented in various random directions. This condition is
called a disorderly state or randomly oriented state. In polycrystalline materials of a
certain type, crystallites are oriented in the direction of a single crystal axis, although
grain sizes may be distributed. This polycrystalline condition is called a textured
orientation or a preferred orientation. Such materials exhibit random orientation in a
direction perpendicular to the axis of orientation; this state is called uniaxially textured

orientation.
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Fig. 5.8 Samples in a polycrystalline state. Sample (a) illustrates a state in which
bar-shaped crystallites are randomly oriented, as described in Fig. 5.7 (5). Sample (b) is in
the preferred orientation described in (4). Sample (c) illustrates a state in which
plate-shaped crystallites are in the preferred orientation.

This condition is equivalent to the condition indicated in Fig. 5.7 (4) and is shown in
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Fig. 5.8 (a) and (b). This state is often observed in fibrous crystal materials and is
commonly encountered in metals extended under certain temperatures. In materials in
this state, crystallites have a flat plate shape (discussed in a later section). Since the
diffraction profile shows noticeable anisotropy, we can use the X-ray diffraction method
to characterize macro-structures. To describe the intensity of diffracted X-rays resulting
from textured orientation, we must understand the state of orientation. Several
correction equations incorporating a parameter indicating the approximate degree of
orientation have been proposed; this booklet does not address the specifics of this topic.

In a polycrystalline sample, we also observe crystal grains oriented along two
crystal axes. This biaxial orientation is the condition shown in Fig. 5.7 (3). Fine common
salt, for example, exhibits crystal grains that are uniformly cubical, much like dice. This
is called a crystal habit. The orientation of all crystal axes shows two relatively
well-aligned crystal axes, as if the cubical crystallites were aggregated, although this
condition cannot be fully attributed to the crystal habit. This is called biaxial orientation.
In this case, crystal grains have a certain average size, around which a certain range of
different sizes is observed. In certain cases, we may encounter biaxial orientation with
large crystal grains, due to defects in crystals in a single crystal in which crystal
orientation partially varies. This is the mosaic crystal state shown in Fig. 5.7 (2).

High-resolution X-ray diffraction can evaluate and identify this state.

5.2.3 Average size of crystallites

The Debye-Scherrer diffracted X-rays expressed by the indices &kl face in a direction in
which the orientation satisfies the Bragg condition for hkl. However, they constitute a
group of diffracted X-rays from numerous crystallites of different sizes. We focus
instead on a profile for one crystallite contributing to the diffracted X-rays. As explained
in Chapter 4, the width of Debye-Scherrer diffracted X-rays is in inverse proportion to

the number of lattice planes in that direction. The function that determines the profile of
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the diffracted beam is called the Laue function (sin?Nx / sin?x). The Laue function can be

approximated by the Gaussian function below.

(sin’Nx / sin’x) = N° exp {-(Nx)*/7} (5.1)

In Equation 5.1, N indicates the number of lattice planes, while x expresses the
displacement from diffraction angle 26. Since this is a Gaussian function, when the
value of N is large, the profile of the diffracted X-rays becomes sharp, and when N is
small, the profile has a gradual shape.

Since the diffracted X-rays we actually observe consist of diffracted beams from
many different crystallites, we can regard them as diffracted X-rays from crystallites of
different sizes. When grain sizes are distributed, the profile becomes the sum of
Gaussian functions. However, diffracted X-rays can be approximated by a single
Gaussian function, and its full width at half maximum is the inverse of the average
value of many crystallites. Using the measurement of full width at half maximum, we
can estimate the average size of the crystallites. Applying this principle, we can use the
width of Debye-Scherrer diffracted X-rays to determine the average size, or average
grain diameter, of the crystallites that contribute to the diffracted X-rays. Since the
average grain diameter is L (in A) and the full width at half maximum of diffracted
X-rays is Bw (26), we derive the following equation based on their inversely

proportional relationship:

L(A) =0.94 A(4)/ B 111(26) cos 6 (5.2)
Here, if we express /, the wavelength of X-rays used in the experiment, in A, and
the full width at half maximum B (26) in radians, the grain diameter L(A) is given in A.
This equation was developed by Scherrer and is called Scherrer’s formula.
If we substitute 1.54 A (CuKa) for 4, 45° for 6, and 90° for the diffraction angle 20in

Equation 5.2, the average grain diameter becomes 230 A when the full width at half
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maximum B (26) of the diffracted X-rays is 0.5° (= 0.00875 rad.). If we observe a sample
with a grain diameter of 2000 A at the same diffraction angle, the full width at half
maximum becomes 0.06°, and the resolution of the equipment must be at least 1/3 of

that value: The resolution must be about 2/100°.
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Fig. 5.9 Debye-Scherrer diffraction profiles obtained from quartz powder samples. Sample
grain diameter: (a) small; (b) moderately coarse; and (c) very coarse. As grain diameter
increases in the sequence (a) to (c), the diffracted X-rays lose uniformity.
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If the average crystal grain exceeds 1 um, the number of crystallites on the X-ray
irradiated surface contributing to diffraction decreases. In addition to generating very
sharp profiles for the diffracted X-rays, this results in nonuniform Debye-Scherrer rays.
Such a profile is said to be spotty. Fig. 5.9 show examples of results obtained with a
cylindrical X-ray camera equipped with an imaging plate detector instead of the
MiniFlex. The samples are quartz powders of varying average grain diameters. As these

diagrams show, larger grain diameters result in increasingly spotty diffracted X-rays.

5.2.4 Condition in which crystallites have distortion distribution

In the discussion thus far, we have assumed that all crystallites in our samples are free
of defects and that their lattice planes are aligned neatly. However, in actual samples,
crystallites are not flawless perfect crystals. The interplanar spacing may be shorter or
longer than average in areas where defects are found. These conditions increase the full
width at half maximum of Debye-Scherrer diffracted X-rays. To understand this, we
examine the equation for Bragg diffraction. Suppose interplanar spacing d is distorted
by 4d in the Bragg equation, causing the diffraction angle 26 to shift by -2460 =2 Ad/d
tan 6. Elongation and contraction result in the distribution of diffraction angles, with the
average value located at the center. This explains the increased width of diffracted
X-rays. If the average distortion is <4d/d> = 7, the spread B’m of the diffracted X-rays is

given by the following equation:

B =2ntan 0 (5.3)
According to Equation 5.3, the full width at half maximum grows wider as the
scattering angle 26 increases. Derived by Hall, this equation is called the Hall formula.
The combination of Equation 5.2 for full width at half maximum based on crystal grain

size and Equation 5.3 is called the Hall-Scherrer formula.

B (cos 0/4) =21 (sin 0 /1) +0.94 1 /L(4) (5.4)
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In Equation 5.4, the sum of the spread B due to grain diameter and spread B'm
due to internal distortion, B = Buwi + B’mi, is assumed to be the measured value of full
width at half maximum. If we plot the observed value B’ (cos 8 /1) against (sin&/4), the
resulting curve is linear. The slope of this line gives the distortion, while the intercept of

(sin@/4)= 0 gives the grain diameter.

5.2.5 Preferred orientation

Now we address the condition of preferred orientation. The previous discussion gave a
warning for identifying a given sample: If the crystal grains are needle-shaped or flat,
the width of certain diffracted X-rays will be sharp, and the diffracted beam
perpendicular to that direction will grow wide. As explained in §5.2.1, this phenomenon
can be understood by examining the Scherrer Equation 5.2 that indicates that the width
of the diffracted X-rays is inversely proportional to the average size of the crystal grains.
For example, in a sample made up of hexagonal crystals whose plane (001) in the
direction 00! is flat, the width of the diffracted X-rays in the direction 00l is wider than
the diffracted X-rays of the indices hk0 in the perpendicular axis. In a sample made up
of needle-shaped crystallites, the diffracted X-rays in the direction of the needle shape
are sharper than the diffracted X-rays along the perpendicular axis.

If the crystallites have the same external shape, the width of the diffracted X-rays
will vary, depending on the indices, and the Debye-Scherer diffraction profile will
exhibit anisotropy. This is because when the orientation of crystals in the sample tends
to align in one direction when the crystallites are bar-shaped (see Fig. 5.8b) or flat (see
Fig. 5.8¢c). Needless to say, diffracted X-rays obtained from such a sample will be highly
anisotropic. Fig. 5.10 shows schematic diagrams for diffraction patterns expected to
result when we use flat-plate X-ray film to observe these two cases. In Fig. 5.10a, the
width of the diffracted X-rays is narrow vertically along the bar, and the Debye-Scherrer

ring is made up only of diffracted spots at the top and bottom, since there is no tilted
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bar. The intensity distribution along the ring is highly anisotropic. In Fig. 5.10b, the
crystallites are in the shape of a flat plate, and overlapping preferred orientation results.
This generates diffracted spots in the same way as in the case shown in Fig. 5.10a, and
the diffraction is also anisotropic, but the spots are wider than in the case of Fig. 5.10a.
In comparison, in Fig. 5.8a, the crystallites are bar-shaped but not oriented in a specific

direction. This exemplifies a random orientation.

e \,\

Fig. 5.10 Anisotropic Debye-Scherrer ring resulting from special shape of crystallites

In actual observations, we see not just one Debye-Scherrer ring similar to the one
shown in Fig. 5.10, but all possible diffraction rings. At first glance, the pattern obtained
is complex. However, if we observe the diffracted X-rays over a wide range using
flat-plate or cylindrical X-ray film, we notice a certain regularity. Further analysis will
provide not just the average size of the crystallites, but information on their shapes. Fig.
5.11 shows the diffraction profile obtained from a copper plate with preferred
orientation due to rolling. The diffraction intensity is anisotropic and is not uniform
along the Debye-Scherrer ring. However, the overall pattern is symmetrical. We
obtained this observation result by using a two-dimensional detector. Diffractometers

such as the MiniFlex measure the location along the equatorial line on the film;
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therefore, in certain cases, diffracted X-rays of certain indices appear very strong, but
diffracted X-rays of other indices do not appear at all. We will understand the
occurrence of such phenomenon if we examine the figure closely. This diffraction profile
is called the diffraction profile of preferred orientation. If we use an X-ray
diffractometer, we see only the equatorial plane of the figure. However, we can also
perform analyses by introducing the orientation functions (March-Dollase function and
spherical function) that correct for diffraction intensity. This booklet lists reference

documents but does not address these topics in detail.

O et R

/

Fig. 5.11 Diffraction profile of rolled copper plate. Variation of intensity is seen along the
Debye-Scherrer diffraction ring, but with certain recognizable regularity.

1) W. A. Dollase: J. Appl. Crystallogr. 19, (1986) 267
2) M. Ahtee, M. Nurmela, P. Suoritti and M. Jaervinen: J. Appl. Crystallogr. 22, (1989) 261

5.3 Quantitative analysis (Rietveld analysis)

Until now, we have discussed qualitative analysis and characterization of
polycrystalline states using an X-ray diffractometer. Can X-ray diffraction be used for
qualitative analysis? The answer is: Yes. To do so, we add a specified standard sample

and use its intensity for comparison. A method developed in recent years allows us to
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reproduce an entire powder diffraction profile, compare it to the observed data, and
determine the parameters necessary. These analytical programs are easily obtained and
the analysis is easily performed. Since these programs allow qualitative analyses, the
method is now widely used. Introduced by H. M. Rietveld (1969), the method is called
the Rietveld refinement or Rietveld method.

The MiniFlex II incorporates an analysis program called PDXL that contains a
Rietveld refinement program. We encourage you to try this method, although the
specifics lie beyond the scope of this booklet. At present, you should understand what
calculations are needed to reproduce an entire powder X-ray diffraction pattern for
comparison to a measured profile. The basic idea is the same as explained in the section
describing structural analysis. The difference is that when the method of least squares is
applied to fit parameters, parameters pertaining to the optical system used and
parameters that affect sample orientation are used, as well as structural parameters
(such as lattice constant, atom position, and temperature factor). Note these parameters
when using the program. The R-factor, which gives the degree of correspondence
between the observed value and a calculated value, is given as a percent value. The

value is expressed by the following equation:

R = [S{ Ij(obs) — Ij(calc)}/ SIj(obs)] x100 (5.5)

If the value of R is 10% or less, the structure can be identified with a fair degree of
certainty. If the value is less than 10% but above 5% or so, parameters for atom position
need to be examined further. If the value is less than 5%, the quality of the data must be
reviewed. If we obtain a value of less than 3%, the analysis has proceeded near-perfectly.

Errors in the parameters obtained are expressed as standard deviations.



Chapter 6: Crystal Structure and Bonding
Power

The knowledge of certain relationships between basic crystal
structures and the bonding forces that act on atoms and molecules
making up the crystal structures helps us analyze crystal materials.
This is the focus of this chapter. The following five bonds give rise
to crystals: metallic, ionic, covalent, hydrogen, and Van der Waals.
Described below are typical crystals formed by each of these bonds.
You will learn that crystals composed of differing bonds can have
identical crystal structures. The relationship between crystal
structure and bond is not one-to-one. When you take a closer look,
you will understand that bonding force is not the only force that
dominates crystal structures. This will become clear as we proceed.

6.1 Crystal structures of metallic materials

The agglomeration mechanism of metals is formed with ions, created by the nuclei and
inner-shell electrons, shared within the potential generated through their periodic
arrangement (although not necessarily periodic), and with no restrictions imposed on
outer-shell electrons by specific ions. The crystal structure itself represents the periodic
arrangement of ions.

The crystal structures of metals generally fall into one of three groups, each based
on a simple structure: the body-centered cubic structure, or BCC (bcc), shown in Fig.
6.1a; the face-centered cubic structure, or FCC (fcc), shown in Fig. 6.1b; and the
hexagonal closed packed structure, or HCP (hcp), shown in Fig. 6.1c.

Table 6.1 summarizes the number of atoms in the unit cell, the coordinates of the

atoms, and the number of closest neighbor atoms.
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Fig. 6.1 (a) body-centered cubic, or BCC, structure; (b) face-centered cubic structure, or
FCC, structure; (c) hexagonal closed packed, or HCP, structure.

Structure Number .Of atoms in Coordinates of the atoms Number of closest
unit cell neighbor atoms
BCC 2 0,0,0 Vo, Vo, Va 8
FCC 4 0,0,0 Vo, ¥4, 0 12
0, %, 2 1,0, %
HCP 2 0,0,0 2/3,1/3, % 12

Table 6.1 Crystal structures and atom coordinates

From Figure 6.1, we see that each atom in the BBC crystal structure has eight closest
neighbors. For FCC and HCP, this number is 12. While the FCC and HCP structures
may initially seem very different, they are actually quite similar. That is why both have
12 closest neighbor atoms. When viewed from the direction [111], the FCC lattice
appears as a two-dimensional atomic plane comprised of hexagonal lattices formed by
precisely arranged atomic spheres of the same size. When atoms are positioned on the
recessed areas formed on the atomic plane, a new atomic plane is created. When atoms
are placed again on that new atomic plane, a new atomic plane is created. This is called
a stacking layer structure.

Examining the atomic plane (111) indicated in yellow in Fig. 6.2, we see that there
are two types of recessed areas, each formed by three atoms. These are a barycentric

position (blue circle) of the equilateral triangle formed by three yellow atoms and the



105

barycentric position (red circle) of the inverted triangle. Let’s refer to these recessed
areas as the B-site and the C-site. The positions occupied by the yellow atoms are not
the blue atomic plane B-site or red atomic plane C-site, but they are other recessed areas
on the red atomic plane. Let’s call them the A-site. The FCC structure is made of three
types of two-dimensional hexagonal lattice—A-site, B-site, and C-site—stacked

repeatedly in sequence. This is called ABC stacking.

Fig. 6.2 FCC structure viewed from direction [111];

If we examine the HCP structure in the same way, we observe that HCP also
features a stacking layer structure, but one consisting of two sites arranged repeatedly
in the order of A, B, A, B,... not three sites. This is called an AB stacking structure. The
direction [111] of the FCC and the direction [001] (c-axis direction) of the HCP can be
characterized by the crystal axes featuring these relationships.

So far, we have examined three types of crystal structure in metals. Let’s examine
the differences in the diffraction profiles obtained from them. Since we have studied the
diffraction profiles of a-Fe featuring a BCC crystal structure and Al featuring an FCC
crystal structure in the previous sections, we will discuss the diffraction profile of Co,
which features an HCP crystal structure. Fig. 6.3 shows the diffraction profile for Co
obtained with the MiniFlex II. We can see three diffracted beams, characteristic of the
hexagonal crystal system, on the low diffraction angle side. This is one difference

between HCP and BCC or FCC. Gaining a familiarity with diffraction profiles makes it
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possible to distinguish these three crystal structures by just looking at the profiles. In
the diffraction profile shown in Fig. 6.3, the reflections are not indexed. Try indexing
them, referring to the examples given in the previous chapter. Also, calculate the crystal
structure factor so that we can gain a better understanding of crystal structures and the

extinction rule.
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Fig. 6.3 X-ray diffraction profile obtained from Co powder with CuKa. rays using MiniFlex II

Assuming that the FCC and HCP are created by stacking two-dimensional atomic
layers in an ideal spherical shape as described above, the axial ratio, c/a, of the HCP has
no relation to the atomic size (atomic radius) and is a constant determined
geometrically by the structure. In such cases, c/a should be (8/3)” = 1.633. However, as
we can see in Table 6.2, helium (He) is the only ideal crystal. The only other metals
approaching this ideal are Mg, with 1.623, and Co, with 1.622. All others show values
far from the ideal. Does this mean we should not assume that atoms are spherical? This
is an interesting question, and a number of other basic questions will be raised in
relation to this issue. Al, Cu, and other metals feature the FCC structure, but Mg and Zn
have the HCP structure, although all are metals. In the periodic table, the elements
belonging to the Ia, VIa, and VIla groups feature the BCC structure, as if to suggest that

the elemental structure is related to the number of outer-shell electrons.
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H He
hcp hep
Li |Be Ne
bee |hep fcc
Na |Mg Al Ar
bee |hep fce fce
K |Ca |S¢c |[Ti |V |Cr |Mn |[Fe |Co [Ni |Cu [Zn |Ga Kr
bee |fece |hep |hep |bee |bee bee |hep |fee |fee |hep fcc
Rb |Sr |Y |Zr |Nb |Mo |Tc |Ru |Rh |Pd |Ag |Gd |In Ke
bee [fee |hep |hep |bee [bee |hep |hep |fec [fee |fec |[hep fce
Cs |Ba |La |Hf |Ta |W |Re |Os |Ir |Pt |Au |Hg |Tl |Pb Xe
bee | bee hcp |bee |bee |hep |hep |fee |fee |fee hep |fcc fcc

Table 6.2 Metal elements and crystal structures

We examined the typical crystal structures of the metal elements. One metal alone is
rarely used as a raw material; typically, metals are used in combination with other
metals. Most metals we encounter in our daily lives are alloys of multiple metals,
although the proportion of such metals in certain alloys may be miniscule. The crystal
structure of an alloy depends on the mixing ratio and the temperature at which the
metal is formed, and these parameters also affect its mechanical and electrical
characteristics. Conversely, to understand the characteristics of metals, we must
examine changes in the crystal structure.

Consider the example of brass, a binary alloy consisting of copper and zinc, shown
in Figure 6.4. In their pure forms, Cu and Zn are stable when they are in the FCC and
HCP configuration, respectively. When Zn is mixed with Cu, it forms the FCC structure
called the a-phase until its content reaches about 35 atomic%. According to the
Hume-Rothery rules, if the diameters of two atoms are approximately equal, the range
of solid solubility is wide, as in the case of CuZn. In the a-phase, the FCC structure of
the mother phase of Cu is mixed with Zn in a disorderly manner. This is called a
disordered structure.

However, if the content of Zn reaches 50 atomic%, it becomes impossible to

distinguish the mother phase. The range of solid solubility remains within several
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percent, and the crystal structure becomes neither FCC nor HCP, but BCC. This is called

the B-phase.

(a) (b)
Fig. 6.4 Schematic two-dimensional diagrams of ordered and disordered structures of

CuZn. (a) Ordered structure: Stable at low temperatures, (b) Disordered structure: Stable
at temperatures above 360°C

Even in the B-phase, both Cu and Zn are in the state of completely solid solutions in
a disordered state at temperatures around 460°C and higher. But at lower temperatures,
if the Cu is at the origin (0, 0, 0) of the unit cell, Zn is located at the body-centered cubic
position (Y2, Y2, ¥2), and the condition shifts to the ordered state. This structure is called
the CsCl structure and is explained in the following section explaining ionic crystals.

If we gradually increase the temperature from relatively low levels, the crystal will
show the orderly CsCl structure at room temperature, but change to BCC at
temperatures above 360°C. If we observe the reflection that does not appear according
to the extinction rule for the BCC (called a superlattice reflection) from the
low-temperature phase, we will see that the reflection disappears at 360°C. This is
because a phase transition occurs, and Cu and Zn shift from an orderly arranged
structure to a disorderly structure, as shown in Fig. 6.4. This change does not occur
suddenly at the transition temperature; rather, the change to the disordered state takes
place gradually, starting at about 300°C. The structure formed during the course of the

phase transition is called a short range order structure.
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6.2 Structure of ionic crystals

Sodium chloride (NaCl), in which the positive ion, Na*, and the negative ion, CI-, are
alternately arranged and bound by Coulomb’s force, is a typical ionic crystal. Generally
speaking, the term ionic crystal refers to crystals formed by more than two types of ions
with positive and negative charges bound by Coulomb’s force. Metal atoms (e.g., Li, Na,
K, Rb, and Cs) belonging to the Ia group in the periodic table and featuring the
above-mentioned bonds can easily discharge one s-electron from the outer shell,
forming positive ions with a closed-shell structure having spherical electron
distributions. On the other hand, nonmetal atoms belonging to the VIIb group such as F,
Cl, Br, and I have electrical characteristics that allow a relatively easy shift to a
closed-shell structure of sp® by accepting a single electron. This results in negative ions.
There is no anisotropy in crystals formed by Coulomb’s force acting between ions, and
their bonding energy exceeds that of metals, because the bonding power of Coulomb’s
force reaches far.

Of the several structural types determined by crystal structure, five are described
here: the CsCl structure, NaCl structure, ZnS structure, wurtzite structure (a polytype of

ZnS), and perovskite CaTiOs.

6.2.1 CsCl and NaCl crystal structures

Fig. 6.5 shows typical CsCl structures. First, let’s examine the unit cell in Fig. 6.5a. The
locations of ions contained in the unit cell are as follows. The Cs* ion is at the
body-center position (Y2, %2, 2), while the Cl ions are located at the corners (0, 0, 0) of
the cubic lattice. Since one molecule is present in the unit cell, the unit cell is electrically
neutral. At first glance, the electrical charge of the unit cell appears to be out of balance.
However, the positive ion in the unit cell counts as “1,” while the contribution of the

negative ion at a corner is “1/8.” Thus, the number of negative ions in the unit cell is 1 (8
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x 1/8), and this is balanced by the positive ion at the body center. Next, let’s consider the
ion at the body center. This ion is surrounded by eight ions of a different type and
bound by Coulomb’s force. The second nearest neighbor ions are of a different type, and
there are six ions in total. These must have a repulsive force. Thus, the number of
neighbor ions increases alternately, but Coulomb’s force acting between the ions
declines in proportion to the square of the distance. Therefore, the structure retains the

overall balance of forces.

(a) (b)

Fig. 6.5 Unit cell of CsCl structure and (b) its extended structure

Fig. 6.5b shows an extended view of this crystal structure. The diagram shows this
ion crystal consists of a simple cubic lattice created by Cs*ions and another simple cubic
lattice created by CI ions; these two lattices are displaced by (Y5, 5, 2) in the
body-center direction to form complex lattices. This feature of the CsCl structure is not
unique, as ionic crystals typically form complex lattices as described above.

Table 6.3 lists crystals that have the CsCl structure and their unit cell dimensions.
These include not only ionic crystals, but binary alloys such as CuZn and combinations

of NH4 group and Cl ions, such as NHCl.

CsCl TIBr | TII CuPd | CuZn | AINi | BeCu | AgMg | LiHg | NH,CI
a=4.1204 | 3.986 | 4.205 | 3.0014 | 2.954 | 2.881 | 2.702 | 3.280 | 3.287 | 3.88

Table 6.3 Crystals that have the CsCl crystal structure

Fig. 6.6 shows the unit cell of the NaCl structure. This belongs to the cubic crystal

system, and we find four molecules in the unit cell. Positive ions (Na) are located at
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tace-centered cubic positions—(0, 0, 0), (Y2, 0, ¥2), (0, Y4, ¥2), and (Y2, ¥2, 0)—while negative
ions (Cl) are positioned at face-centered cubic lattice points—(0, 0, 2), (*2, 0, 1), (0, %2, 1),
and (Y, Y2, ¥2)—with the origin at (0, 0, ¥2), which is displaced by half the lattice constant
of the unit cell in the direction [0, 0, 1]. This structure results in complex lattices with the
positive face-centered cubic lattice and negative face-centered cubic lattice displaced by

% in the direction [0, 0, 1].

Fig. 6.6 Structure of unit cell of NaCl crystal The large spheres and small spheres in the
diagram represent Cl ions and Na ions, respectively.

The balance of ions in the unit cell is neutral, as in the case of CsCl. This is easily
understood if we see that half of the ions at the face-center position contribute to the
unit cell and Y4 of the ions located halfway to the crest contribute to the unit cell. In this
structure, one ion of either type is always surrounded by six nearest neighbor ions, and
the second nearest neighbor ions are 12 ions of the same type. Crystals that take this

structure are indicated in Table 6.4, but the structure is not limited to ionic crystals.

LiF NaCl KCl | KBr | AgBr | MgO | MnO | PbS
a=4.027 & | 5.6402 | 6.2952 | 5.770 | 6.775 | 4.216 | 4.443 | 5.931

Table 6.4 Chemical compounds with the NaCl crystal structure. The numbers below
indicate the size of the unit cell.

6.2.2 Zincblende structure or copper chloride structure and wurtzite structure

Fig. 6.7a shows a unit cell of zincblende structure (or cubic zinc sulfide structure)

consisting of Zn?* ions which belong to the IIb group in the periodic table and S* ions
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which belong to the VIb group. Though it appears complex at first glance, the structure
belongs to the cubic crystal system and the complex lattices are comprised of the FCC
lattice created by Zn?* ions and the FCC lattice of S* ions displaced by Y4 in the
body-center direction. There are four ZnS molecules in the unit cell, and the positions of

these ions are given below:

Coordinates of Zn2: (0, 0, 0), (%, 0,%),  (0,% %), (% %, 0)

Coordinates of S (Va, Y4, Va), (%, Va, %), (Y4 %, %), (%, %, VA)
[111]

Fig. 6.7 Ton crystal of zincblende structure. (a) Arrangement of ions in unit cell; (b) Ions
are surrounded by the nearest neighbor ions of a different type arranged tetrahedrally.
Zn*'S*", can be regarded as the component element of this ion crystal.

If we focus on one ion and count the nearest neighbor ions, we will find four ions.
The number is significantly smaller than that in the CsCl or NaCl structure. As shown
in Fig. 6.7b, a tetrahedron surrounds these ions. The second nearest neighbor ions are of
the same type, but the number is only eight. The structure with a small number of
neighbor ions can be considered as a low-density crystal structure.

If we examine the tetrahedron unit by viewing the plane (110) with direction [111]
as the z-axis, we see the ion configuration shown in Fig. 6.8. The sulfur ions represented

by large circles in the diagram are stacked in the order ABCABC..., just like the FCC
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structure of metals. This is because these ions adopt the FCC structure by nature. In Zn,
an electrical double layer comprised of Zn?* and S* is stacked in the order ABCABC.... If
the electrical double layer stacking ABCABC... exists, there must also be an electrical
double layer stacking of ABAB.... Such polytype structures belonging to the hexagonal
crystal system are not limited to ZnS; they are also found with the substances shown in
Table 6.5. This structure is called the wurtzite structure, or hexagonal zinc-sulfide
structure. Interestingly enough, the axial ratio, c/a, is very close to the ideal value of

1.633, as indicated in Table 6.5.

Thraetold axis
& (i

Fig. 6.8 ZnS structure (cubic) and wurtzite (hexagonal) structure. In the structure shown in
(a), the electrical double layer comprised of Zn®" and S* is stacked in the order
ABCABC.... In the wurtzite structure, the electrical double layer is ideally stacked in the
order ABAB.... We observe a three-fold symmetry around the axis [111] in a cubic crystal,
but when the wurtzite structure changes to a multiple-structure, that axis becomes the ¢
axis of the hexagonal crystal, thus resulting in six-fold symmetry.

We use IIb-VIb-group ionic crystals as an example here, but the combination of
ionic crystals is not limited to this group. As shown in Table 6.5, there are various
combinations of Ib-VIIb-group ionic crystals and IlIb-Vb-group ionic crystals. If the
valence value increases, it becomes difficult to determine whether the atoms have been
ionized. Although some ion bonding remains, it is weak, and the covalent bond of
electrons is stronger. As in the case of silicon carbide (SiC), Vb-Vb-group substances are

classified as covalent crystals, not ionic crystals. For your reference, Fig 6.9 shows the
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differences in diffraction profile between the zincblende structure and wurtzite
structure. The wurtzite structure is characterized by three strong diffracted beams, (100),

(002), and (101), which appear first in the hexagonal crystal system.
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Fig. 6.9 X-ray diffraction profiles of ZnS structure (top) and ZnO wurtzite structure (bottom)
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Name of Cubic crystal Hexagonal crystal Remarks
crystal (zincblende structure) (wurtzite structure) (bonding)
SiC a=4.3584 a=3.079A  ¢=5.0534 (Covalent)
AlF 4.32 - 111b-VIIb
CuF 4.264 - Ib - VIIb
CuCl 5.4202 - Ib - VIIb
Zn0O - 3.249 5.205 IIb - VIb
ZnS 5.4109 3.811 6.2334 IIb - VIb
ZnSe 5.670 3.974 6.506 IIb - VIb
ZnTe - 4.273 6.989 IIb - VIb
Agl 6.466 - Ib - VIIb
aAgl 5.106 (Im-3m)
CdS 5.720 4.140 6.715 IIb - VIb
CdSe - 4.299 7.010 IIb - VIb
InAs 6.055 - IIIb - Vb
InSb 6.478 - IIIb - Vb

Table 6.5 Zincblende structure and wurtzite structure

Problem: Referring to the X-ray diffraction profiles shown in Fig. 6.9, confirm their
intensity modulations by calculating their crystal structure factors.

6.2.3 Structure of CaF; crystal

Another ionic crystal worth mentioning here is the CaF: crystal structure. Thus far, we
have examined binary ionic crystals. In these crystals, the ionic valence value is the
same, but the crystal is formed by ions of different types, A* and B~. There are crystals of
another type, in which one type of ion has a valence value of 2, and another type of ion

has a valence value of 1, but since two such ions exist, electrical neutrality is maintained.
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Fig. 6.10 Unit cell of CaF), structure
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Fig. 6.10 shows the unit cell of CaF.. A Ca* ion with a valence value of 2 is
located at the FCC position, while F- ions having a valence value of 1 are in the FCC
configuration with (Y4, V4, ¥4) and (Y4, %, Y4) as the origins. This ionic crystal maintains
electrical balance in its unit cell. Table 6.6 shows the crystals of this type. As we see in
the table, there are generally two halogen ions having a valence value of 1 for each
alkali ion having a valence value of 2. But in many cases, as we see with CuzS, there are
two metal positive ions Cu* having a valence value of 1 (which belongs to the Ib group
in the periodic table) for each negative ion S* having a valence value of 2 (which
belongs to the VIb group). The stacking [111] indicates the two layers formed by ions
having a valence value of 1 sandwich ions having a valence value of 2 to maintain

electrical neutrality.

Name of . Distance between nearest
. Lattice constant . . Remarks
material neighbor ions (A)
CaF, 5.463 2.36 IIa - VIIb
SrF, 5.800 2.50
SrCl, 6.977 3.02
BaF, 6.200 2.68
CdF, 5.389 2.34 IIb-VIIb
PbF, 5.940 2.57 IVb - VIIb
CsO, 6.620 2.34 Ia -VIb
PrO, 5.394 2.32 IIIa - VIb
ThO, 5.598 2.41
71O, 5.090 2.20 IVa - VIb
Li,O 4.610 2.00 Ia—VIb
Li,S 5.719 2.47
Na,S 6.539 2.83
Cu,S 5.564 2.42 Ib - VIb
Cu,Se 5.854 2.49

Table 6.6 Ionic crystals with CaF, structure

The X-ray diffraction profile shown in Fig. 6.11 was obtained from a CaF. powder
sample using the MiniFlex II and CuKa rays. The observed curve is indicated in red,
while the intensity modulation obtained from an ICDD search is shown in blue. The

graph shows a close match between the two.
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Fig. 6.11 X-ray diffraction profile of CaF, obtained using MiniFlex II. The observed curve
is indicated in red, while the intensity modulation obtained from an ICDD search is shown
in blue.

6.2.4 Perovskite crystal structure

The perovskite structure is somewhat more complex than those discussed above. This
is a cubic crystal, abbreviated as RMXs, and the representative crystal is perovskite
(CaTiOs). Fig. 6.12 shows the ion configuration in the unit cell. The positive ion R*
having a valence value of 2 is located at each corner of the unit cell, while the positive
ion M* having a valence value of 4 is located at the body center. To achieve electrical
balance, negative ions X> having a valence value of 2 are positioned at the face-centered
cubic positions. From a different perspective, this structure can also be described as
follows: The simple cubic lattice is formed by the positive ions R at the corners; six X*-
negative ions at face-center positions form an octahedral cluster of MXes, around the M**
located at the body-center position. The R** positive ions at the corners occupy vacant
spaces within the cluster. The structure is electrically balanced.

Fig. 6.13 shows the X-ray diffraction profile observed using the MiniFlex II and



118

CuKoa rays. Although this is a cubic crystal, complete extinction does not occur on any
reflection plane and all reflections appear. But since oxygen (O) atoms are smaller than
calcium (Ca) or titanium (Ti) atoms, the corresponding contribution to scattering can be
regarded as very small. On the other hand, the atomic numbers of Ca and Ti are 20 and
22, respectively, and they may be mutually canceling or reinforcing. Since they have the
positional relationships of a BCC lattice, we can expect intensity modulation, based on
the extinction rule applicable to the BCC lattice. Keeping this in mind makes it possible

to index reflections easily.

Fig. 6.12 Perovskite crystal structure. Positive ions (striped circles) having a valence value
of 2 are located at the corners of the cubic crystal, while negative ions (open circles)
having a valence value of 2 form an octahedron. A positive ion, M (solid circle), having a
valence value of 4, is located at the center. Thus, this structure maintains its electrical
balance.

This structure has a center of symmetry and is an electrically neutral insulating
body. However, the cluster group deforms readily due to the difference in radius
between R and M ions. As deformation occurs, the structure changes to another crystal
system of reduced symmetry, such as a tetragonal, orthorhombic, or triclinic structure.
Polarity also appears (polarization), and the dielectric characteristic (electric-
tield-dependent phenomenon of electric displacement resulting from the application of
an electrical field to crystals) changes significantly. Certain crystals become ferroelectric
(polarization condition) while others become antiferroelectric (polarization condition

differing from that in adjacent unit cell). Such crystals polarize when external pressure
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is applied. If we apply an electrical current, the crystals deform (piezoelectric effect).

Crystals with this characteristic are used in various applications.
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Fig. 6.13 X-ray diffraction profile obtained from CaTiO3 powder using CuKa rays

If we examine dielectric characteristics across a wide temperature range, we will see
certain cases in which distinctive phase transitions occur. For instance, barium titanate
(BaTiOs) changes in the following sequence: paraelectric cubic crystal — ferroelectric
tetragonal crystal — monoclinic crystal with different ferroelectric axis — triclinic
crystal with further changed ferroelectric axis. In the case of lead zirconate (PbZrQO:s), the
following phase transition occurs: paraelectricity — superlattice structure with
antiferroelectricity.

Phase transitions from a ferroelectric phase with polarity in a certain direction to a
ferroelectric phase with polarity in another direction occur as well. We mentioned that
the MXes octahedron in SrTiOs and LaAlOs is readily deformed. However, the
octahedron in TiOs will not deform, as shown in Fig. 6.14a. Instead, it rotates around the
crystallographic axis <001> and changes its direction while maintaining consistency
with the octahedrons located above, below and on the right and left sides, thus
achieving phase transition to a superlattice structure. This is called structural phase

transition. Fig. 6.14b shows the superlattice structure viewed from the direction <001>.
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Fig. 6.14 Superlattice structure seen in SrTiO; and other crystals. The TiOg cluster tends to
generate rotational vibration around the crystallographic axis. It is believed that freezing
of that vibration mode results in the transition to a superlattice structure. Two possible
rotation vibrations are shown in (a), while a superlattice structure after freezing is
indicated in (b).

Table 6.7 lists the names of materials with this crystal structure, lattice constants,

and possible phase transitions. Note that this is not a complete list.

Name of Lattice constant Phase transition Remarks
crystal temperature (°C)

BaTiO; 3.994 4.03 (P4mm) 130, 5, -75 Ferroelectric transition

KNbO; 3.997 4.06 (P4mm) 435,225, -10 Attributable to MXg
deformation

PbTiO; 3.904 4.150 (P4mm) | 490

KTiO; None <-273

NaNbO; | 3.927 3.934 643, 572, 520, 480, 365 | Antiferroelectric phase
transition

PbZrO; ? 233 MX, deformation

PbHfO; | 4.140? 215

SrTiO; 3.905 -168 Phase transition to
superlattice structure

KMnF; 4.190 -87, -181 Attributable to M X rotation

LaAlO; None 535

CsPbCl; | 5.605 47,42, 37

CsPbBr; | 5.870 131, 89

Shown here are the basic structures and their main phase transitions. We can also

modulate these basic structures: for example, by mixing two or more crystals with a

Table 6.7 Perovskite crystal and crystal phase transition
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number of characteristics to synthesize new crystals, such as (R, Rb)(M?.y Mby) Xs.
Mixing ratios are readily varied with powder ceramics, and various materials with

unique characteristics are currently being developed.

6.3 Covalent crystals

Carbon, silicon, germanium, and tin, which belong to the IVb group in the periodic
table, feature a diamond* structure composed of carbon atoms. In this structure, atoms
are attracted by covalent bonding (or homopolar binding). They represent a structure
typical of covalent crystals. Fig. 6.15a symbolically expresses this type of bond. Carbon,
silicon, and germanium have four outer-shell electrons but require four electrons to
achieve stable closed shells. They borrow four electrons from surrounding neighbor
atoms to meet this need, providing their own four outer-shell electrons to neighbor
atoms. In other words, covalent bonding achieves stability by sharing electrons with

other atoms to create closed shells.

6.3.1 Diamond structure crystal

Fig. 6.15b is a diagram showing a unit cell of a diamond structure crystal. This structure
is occupied by atoms of one type belonging to the IVb group in a zincblende structure,
regardless of positive or negative ions. In this structure, we find two FCC lattices,
displaced %4, Y4, ¥4 in the body-center direction. Inside the unit cell, eight atoms are
positioned at the following locations:
0,0,0;, %,%,0;, %,0,%; 0%, Y Y Y, Y %, %, Ya, %, Ve, % Y4, %, %
Just as with the zincblende structure, one atom—for example, the atom at

coordinates %4, V4, Ya—is surrounded by four neighbor atoms, forming a tetrahedron

* Certain substances display different crystal structures under identical temperature and pressure, which are called
polymorphs. Due to the differences in crystal structure, the physical properties vary as well. A typical example is
carbon: Graphite and diamond are polymorphs to each other. In recent years, polymorphs such as fullerenes and
carbon nanotubes have been discovered and attracted attention.
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when connected to these four atoms. In this case, each atom is located at the center of
the tetrahedron and borrows four electrons from the four atoms at the apices of the
tetrahedron to produce an apparent closed-shell structure and achieve stability.
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Fig. 6.15 Covalent bonding (a) and diamond crystal structure (b). The diagram in (a)
illustrates the covalent bonding symbolically. The diagram in (b) shows a diamond
structure. This structure is the same as a zincblende crystal structure, but with atoms of the
same type, not different ions. There are four neighbor atoms with which bonding electrons
are shared.

Unlike in the zincblende structure, this structure features covalent bonding with
shared electrons. With ionic bonds, electrons are distributed in a spherical configuration
having each ion positioned at the center. In the case of covalent bonding, electrons are
located between and shared by the atoms. Consider the example of diamond. The
carbon atom has a total of four electrons in the s-orbital and p-orbital of the L shell,
extending in the direction of neighbor carbon atoms to form an sp® hybrid orbital and
sharing electrons with four neighbor carbon atoms. Thus, bonding electrons are found
between the carbon atoms. The presence of these bonding electrons can be confirmed
through X-ray crystal structure analysis.> The lattice constant is 3.56 A for diamond and
5.43 A and 5.65 A for Si and Ge, respectively. Tin (Sn) also belongs to the IVb group and
is known to have a diamond structure. However, it is stable at temperatures below 7°C;

its lattice constant is 6.46 A.

’ Kato et al. report announced circa 1964
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Silicon (Si) has been used as the basic material for semiconductor elements since the
1960s, and there is growing demand for high-quality, large-diameter single crystals.
This has led to the excellent powder samples currently available. Active research on this
material has led to highly precise lattice constants. Si is often used as a standard sample

in powder X-ray diffraction. Fig. 6.16 shows the X-ray diffraction profile obtained with

the MiniFlex II.
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Fig. 6.16 X-ray diffraction profile of silicon powder. The measurement was obtained with
the MiniFlex II. The diffracted X-rays show very sharp peaks.

Problem: The diffracted image obtained from a diamond structure displays a unique
extinction rule. Describe this extinction rule.

6.3.2 Structure of quartz
The scientific name for crystals® of pure SiO: is quartz. As shown in Fig. 6.17, two forms

exist: right-handed and left-handed, distinguishable by their external appearance. In

terms of physical properties, the two types of quartz feature opposite optical rotatory

® In Japan, the term “crystal” in general refers to a large beautiful crystal. Such usage is not observed in other
countries.
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power (rotating phenomenon caused by deflected surface of light passing through a

crystal). The two types are also called right-angled quartz and left-angled quartz.

Left-handed quartz Right-handed quartz

Fig. 6.17 Two external quartz shapes

As its appearance indicates, quartz belongs to the trigonal crystal system and can
be expressed with symmetry P3:21. The lattice constants are a = b = 4.912(1) A, ¢ =
5.402(1) A, a. = B =90°, y = 120°, and the unit cell contains three molecules. Given the
coordinates of the Si and O atoms in the unit cell, the unit cell can be illustrated as
shown in Fig. 6.18. The position of the Si atom in the unit cell can be expressed as
follows, based on the following parameters: x = 0.5302, y =0, z = 1/3:

&y 2); (Y, Xy, zH(1/3));  (-x+y, 1x, 2+(2/3))

In Fig. 6.18a, the Si atom (blue) is located at the center of the tetrahedron formed by
O atoms (red). The Si atom and four O atoms are bound by covalent bonds. The
structure consists of a three-dimensional network of tetrahedrons, shown in Fig. 6.18b.
This crystal has piezoelectricity, a characteristic that is attributed to the deformation
resulting from the electrical field or stress caused by the regular tetrahedron
surrounding the Si atom. In passing, piezoelectricity is believed to have been first
observed (in 1811) in quartz.

Fig. 6.19 shows the X-ray diffraction profile. Based on this diffraction pattern, we
can see the absence of disappearing reflections. All reflections can be observed, and they
appear intricate.

Heated to temperatures around 575°C, quartz undergoes a phase transition,

becoming hexagonal-crystal high-temperature quartz. We now know that the change is
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not directly from the low-temperature structure to the high-temperature structure, but

that the structure changes twice in sequence within a narrow temperature range.

o
‘o ‘o
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Fig. 6.18 Crystal structure of quartz
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Fig. 6.19 X-ray diffraction profile of quartz obtained using CuKa rays

Problem: Referring to the diffraction profile shown in Fig. 6.19, extract the indices of a
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strong reflection and examine the reflection-causing plane of the crystal lattice.

Problem: Earlier in this booklet, we mentioned that unique diffracted X-ray patterns
called “five fingers” appear in the diffraction profile of quartz. Referring to Fig. 6.19, try
to determine their indices.

6.4 Graphite crystal structure

Fig. 6.20 shows the crystal structure of graphite. Carbon atoms are located at the
connecting points of orderly arranged hexagonal lattices, forming an atomic plane. In
graphite, atomic planes are displaced laterally and stacked to form layers. Graphite is
also called black lead, but is more commonly called graphite today. The diagram shows

the unit cell with a dotted line.

nuolo.-‘

Fig. 6.20 Crystal structure of graphite. The area indicated by the dotted line is the unit cell.

Graphite belongs to the hexagonal crystal system, and the lattice constants are a =
2456, c = 6.696 A. The unit cell contains four carbon atoms, positioned at 0, 0, 0 and 1/3,
2/3, 0 on the plane of z =0, and at 0, 0, 2 and 2, 2/3, %2 on the plane of z = %.. In the
plane, the C atom is surrounded by three neighbor atoms. The interatomic distance is
1.42 A. Although this distance is less than the C-C distance of 1.54 A in the diamond

structure, it is longer than the distance of 1.39 A resulting from the formation of a
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benzene ring by carbon atoms. This structure indicates a covalent bond between C and
C. The distance between the planes is long, 3.35 A, and the planes are bound by the
weak Van der Waals force. This structure allows easy sliding of the atomic planes. This
is why powder graphite feels smooth and graphite is easily bent. The existence of many
polytypes is also believed to be attributable to this bond.

Graphite has a melting point of 3550°C, higher than any other element. Its heat
conductivity, elasticity, magnetic susceptibility, and thermal expansion exhibit
noticeable anisotropy. With respect to the state of the electrons of the carbon atoms,
atoms in the plane are bound by o-binding of sp?, but one surplus electron in the outer
shell is an unpaired n electron, and a C-ion plane with two-dimensional periodicity
contributes to conduction, providing the same electric conductivity as a metal. However,
conductivity in the c-axis direction is lower by four orders of magnitude, and we
observe significant anisotropy. The excellent electric and thermal conductivity of
graphite is attributable to the arrangement of the atoms in the plane.

When carbon hydride is placed on a high-temperature base and compressed for
thermal decomposition, the graphite layer grows with good orientation. This is called
pyrolytic graphite. The (002) plane of graphite has a long interplanar spacing, making
graphite suitable for use as an analyzing crystal. However, single crystals of graphite
are difficult to obtain. Pyrolytic graphite is suitable for this purpose, and this crystal is
used frequently.

Fig. 6.21 shows the diffraction profile obtained from a pyrolytic graphite sample
using the MiniFlex II. It features a very strong 002. By comparison, all other reflections
are weak. The full width at half maximum of each reflection is wider that those of other
crystals. These characteristics derive from the small crystallite size and numerous flaws
in the crystal. The lattice plane of a crystal used for monochromatization of X-rays is the
plane 002. This is because the intensity from this plane is high, and the diffraction angle

appears on the base angle side, making it easy to use.
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Fig. 6.21 X-ray diffraction profile of graphite obtained using CuKa. rays

If carbonaceous high polymers are carbonized at high temperatures, we obtain
glassy carbon. In this black carbon material, graphitization has not progressed in terms
of structure, and disorderly three-dimensional bonds are found between carbon atoms.

The material is not in a crystal state and offers high resistance to heat and chemicals.

6.5 Molecular crystal

Some crystals are called molecular crystals. These differ from the crystals discussed thus
far in their mechanism of agglomeration. Because agglomeration depends on the weak
Van der Waals force acting between molecules, the corresponding melting point is
significantly lower than that of crystals bound by other forces, and the latent heat of
fusion is also small. In many substances, the molecular structure seen in the gas state

remains virtually unchanged, even when crystallized. We say “virtually” here because
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the interatomic distances in molecules in the vapor state differ slightly from those in a
crystallized state. Putting that aside, to elucidate the crystal structure, we crystallize the
substance in certain cases and apply X-ray diffraction for crystal structure analysis.
Confirming the atom positions in the unit cell lets us grasp the molecular structure. This
method is currently used to examine the structures of organic molecules. The widely
performed structural analyses of proteins are a good example. Since crystal structure
depends on the shape and size of the molecules, crystals with good symmetry are rather
rare.

There are many other examples of such crystals, but we will take a very simple
molecular crystal as an example and give a brief discussion. First, we introduce how the
structures changes when inert gases like He, Ne, A, Kr, and Xe; diatomic molecules in
the gas state under ordinary temperature and pressure like Hz, N2, Oz, CO, Clz, and Br;
and HF, HCI, HBr, H20O, H:S, H>Se, NHs, PHs and CH: liquefy under low temperatures,
then solidify and crystallize. Of these, helium (He) assumes the HCP structure, while
Ne, A, Kr, and Xe assume the FCC structure. Although we cannot explain here why
only He assumes the HCP structure, given that the inert atoms are regarded to have
spherical electron distributions, the structure appears reasonable.

Consider diatomic molecules, represented by Hz. These molecules also assume the
HCP structure, except at extremely low temperatures. Since diatomic molecules are
shaped like cocoons, although it is not easy to imagine, the molecules move as if freely
rotating near their barycentric positions even when crystallized. Thus, we can regard
them as spherical. At low temperatures, the rotational motion becomes inactive. It
would be interesting to learn what structure it adopts in this state.

Hydrogenated molecules assume interesting structures, except for substances
associated with hydrogen bonds, such as HF, H.O, and NHs. Just as with H, the
rotational energy of molecules near the melting point is less than the thermal energy

ksT, and free rotation is possible. The molecule is considered to be a sphere and to
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assume the FCC structure. As temperature decreases, however, the structure changes,
becoming more complex. These substances are hard-to-handle gases, solidifying at low
temperatures and making experiments difficult. For these reasons, research has not
advanced beyond that done quite some time in the past. Certain reference materials are

listed for your reference.

6.6 Crystal bound by hydrogen bonding

Atoms of the same type (X-X) or of different types (X-Y) are often bound by hydrogen
(H), forming X-H-X or X-H-Y. In most cases, X and Y are light elements that change
readily to negative ions, such as fluorine (F), oxygen (O), and nitrogen (N). These bonds
are achieved as follows: The hydrogen atom between the two atoms releases an electron
and becomes a proton (p*). The released electron is received by X or Y, resulting in a
negative ion. This attracts p* due to Coulomb’s force. We can regard this as localized ion
bonding. This type of interatomic binding mode is called hydrogen bonding. We
observe hydrogen bonds within single molecules, but they also act between molecules
and contribute to the agglomeration mechanism. This bond has directionality and is
stronger than Van der Waals forces. Its effects can be observed in a crystallized material

as deformation of the molecular structure of the gas state.

6.6.1 Crystal structure of ice

Ice crystals are representative crystals bound by hydrogen bonds. At atmospheric
pressure, water freezes and changes to ice when temperatures fall. The resulting
structure is a ZnS structure hexagonal crystal system, called the I» phase. In this crystal
structure, all Zn and S positions are occupied by O atoms. Each oxygen atom is
surrounded by four neighbor oxygen atoms in a tetrahedral arrangement, and one

hydrogen atom is always found between the O atoms. Two hydrogen atoms always
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exist spatially near each oxygen atom. At a given moment, each oxygen atom in this
structure appears to configure an H20 molecule. The hydrogen atom is in the O-H---O
configuration at a given point in time, belonging to the oxygen atom on the left side, but
in an O--H-O configuration, belonging to the oxygen atom on the right side, in the next.
We see this bond when an electron from the H atom moves to an oxygen atom, leaving
the hydrogen atom as a bare proton (p*) and the oxygen atom as a negative ion, O, and
generating localized ionic bonds of O~ p--O-. This structure exists only momentarily.
The average structure is expressed O-p/2 -+ p/2-O. The proton occupies one of the two
positions between the two oxygen atoms, with the probability of occupying either
position being 2. In this structure, the bonds between oxygen atoms are partially
strengthened in the manner described above. This is the difference from molecular

crystals bound by the Van der Waals force.

Ice | Crystal sstem | Density (g/cm?®) | | Ice | Crystal system | Density (g/cm?)
In | Hexagonal 0.92 V | Monoclinic 1.23
I | Cubic 0.93 || VI | Tetragonal 1.31
Il | Rhombohedral 1.17 | VIT | Cubic ~1.50
I | Tetragonal 1.16 | vIII | Cubic ~1.66

Table 6.8 Eight phases of ice reported and accepted. The phase equivalent to that of ice
has been found in D,0. IV and IX have been reported, both in the metastable phase.

If temperature and pressure change, the crystal structure of ice changes to another
stable structure within a certain range of pressures and temperatures. As shown in
Table 6.8, a total of eight phases have been identified and accepted. Phase II and above
are high-pressure phases appearing at pressures of 2 x 10% Pa and beyond. Phase I. is the
phase of ice observed when water vapor is sprayed on a substance cooled to low
temperatures in a vacuum. In metals cooled in a faulty vacuum condition, condensation

can occur on the metal surface. Such condensation contains ice with this structure. The



132

crystal structure is a ZnS structure of a cubic crystal system, which is closely associated
with I. This is a diamond structure wherein Zn and S atoms are replaced by O atoms.
Electron diffraction studies confirm that a hydrogen atom occupies either of two

positions between oxygen atoms, just like in Ii.

MISSING FIGURE

Fig. 6.22 (a) Ice of hexagonal crystal structure; (b) Ice of cubic crystal structure

This booklet has been prepared to provide users with a knowledge of X-ray
diffraction. To deepen your understanding of the crystal structure of ice, the positions of
hydrogen atoms are discussed here. However, confirming the positions of hydrogen
atoms is a difficult task to perform via X-ray diffraction. Crystal structure analysis using
X-rays generally disregards hydrogen for two reasons. First, the oxygen atom has eight
electrons, while the hydrogen atom has one. In terms of contributions to X-ray
scattering amplitude, the ratio between oxygen and hydrogen is 8:1. The intensity
contributing to scattering and diffraction is proportional to the square of the amplitude.
This points to the difficulty of this kind of analysis, but does not rule it out as
impossible. The second reason is the bonding state. If a hydrogen atom is bound to
another atom, the electron of the hydrogen atom is bound to the other atom. Hence, the
one electron does not locally exist around the proton or the nucleus of the atom. In the

case of the I or i structure (Figure 6.22), since one electron is shared by two oxygen
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atoms, this is even harder to confirm.

The problem posed by this half hydrogen model drew attention as a potential key
to understanding hydrogen bonds. It was solved by neutron diffraction and electron
diffraction. Using neutrons provides the following advantage in certain cases: The
scattering amplitude is not dependent on the atomic number Z, since scattering by
neutrons in atoms is equivalent to scattering by atomic nuclei. However, hydrogen
causes inelastic scattering even when it has a single neutron, creating high background
relative to the signal. Since replacing hydrogen with deuterium provides an advantage,
neutron diffraction experiments formerly used ice made by freezing deuterated water.
These efforts led to the confirmation of the half hydrogen model”.

If we use electron diffraction, electrons block the Coulomb potential created by the
nuclei of atoms, resulting in the scattering of Coulomb-type potential (blocked Coulomb
potential). Attributed to electron distortion, this induces a multi-pole potential, and
electrons scatter dramatically. This is one advantage over X-rays®. In the case of
hydrogen bonds, even if electrons are attracted by oxygen atoms, the scattering of
electrons caused by the Coulomb potential attributable to protons cannot be
disregarded. This is the reason why this method was used to find that the hydrogen

bonds of Ic are half hydrogen bonds’.

6.6.2 Hydrogen-bound crystals other than ice

Examples of hydrogen-bound crystals similar to ice include hydrogen fluoride (HF)
and ammonia (NHs). In addition, the results of electron diffraction experiment studies
indicate hydrogen sulfide is hydrogen-bound in a low-temperature phase.

Other substances such as potassium dihydrogen phosphate (KH2POs) display a

unique ferroelectricity attributable to hydrogen bonds. We will use this compound as an

7'S. W. Peterson and H. Levy, Acta. Cryst. 10 (1957) 70
¥ J. Harada and Y. Kashiwase, J. Phys. Soc. Jpn. 17 (1962) 829
? K. Shimaoka, J. Phys. Soc. Jpn. 15 (1960) 106
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example. Potassium dihydrogen phosphate is abbreviated KDP, which stands for
Kaliumdihydrogenphosphat in German. Under ordinary temperatures, it belongs to the
tetragonal crystal system; the unit cell is a = 7.4532 A, ¢ = 6.9742 A, and it is paraelectric.
At temperatures below T. = 123K, it assumes an orthorhombic structure and is
ferroelectric. This phase transition is classified as an order-disorder ferroelectric phase

transition. KDP has drawn the interest of many researchers.

Fig. 6.23 Schematic diagram of KDP’s crystal structure of high-temperature phase

The structure of the high-temperature phase consists of a positive potassium ion, K-,
and a tetrahedral structure (H2POs)™ having a valance value of 1. The oxygen atoms at
the four corners of this tetrahedron (POs) form O-H---O type hydrogen bonds (nearly
perpendicular to the c axis: located in plane ab) with the oxygen atoms of the four
adjacent (POs) via hydrogen atoms. The number of H atoms in one (POs) is two, and
these two H atoms are not regularly bound with any particular one of the two oxygen
atoms, but randomly distributed. In the structure of the low-temperature phase, the
spatial arrangement of O atoms is virtually identical to that in the high-temperature
phase, but the K* and P atoms are moved slightly—by 0.04 A and 0.08 A,
respectively —and result in deformation. Hydrogen atoms exist locally only for the O
atom on one side, forming (H2POs)". In KD2PO: (called DKDP), in which deuterium
atoms replace hydrogen atoms, and the transition temperature rises to Tc = 213K. As a
typical substance displaying an order-disorder ferroelectric phase transition, KDP is

often compared to BaTiOs and its shift phase transition.

6.7 Other highlighted crystal structures

We have discussed the most basic and easy-to-understand crystal structures to be used

as materials. The purpose of this booklet is to familiarize readers with X-ray
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diffractometry and to allow them to identify or analyze materials. We have not dealt
with complex structures or specialized materials, with the exception of KDP, mentioned
near the end of this section. Nor have we mentioned the structures of recently
highlighted materials: high-temperature superconducting materials, special cement
minerals, asbestos-related materials, magnetic materials, pharmaceutical crystals, and
special materials required for inorganic/organic chemistry. We leave it to the reader to

select a material of interest and to pursue his or her own in-depth research.






Chapter 7. X-Ray Diffractometer Operation
Techniques

This chapter describes important and useful information regarding
the functions of X-ray diffractometer components and sample
preparation to be studied before using the MiniFlex II.

7.1 Detector

Humans cannot perceive X-rays directly. Instead, we use the interactions between
X-rays and a particular substance to convert X-rays into detectable form. This generally
involves the following methods:

(1) Photographic effect

e Photographic film, dry plate, etc.
(2) Ionization effect

¢ [on chamber, Geiger counter (GMC), proportional counter (PC)

e Position-sensitive proportional counter (PSPC), one-dimensional and two-dimensional
detector

e Solid-state detector, one-dimensional array (SSD, SDD)

e Solid-state two-dimensional pixel detector

(3) Scintillation effect

¢ Fluorescent plate, scintillation counter (SC), CCD
e Photostimulable phosphor film (IP)

In addition, researchers are also exploring an X-ray image orthicon tube (IO) that
harnesses the photoconductive effect and X-ray television. A detailed account lies

beyond the scope of this booklet.

Since photographic emulsions for visible light are also sensitive to X-rays, the
photographic method was used for quite some time. A single, easily stored film can
record information on detection position and X-ray intensity. However, sensitivity and
accuracy are inferior to counters developed more recently, and the development of

exposed film raises environmental concerns. Photographic film is no longer used;



138

photostimulable phosphor film (IP) has replaced photographic film. In place of a
two-dimensional detector, the MiniFlex II employs a scintillation counter. The

advantages of the scintillation counter are described below.

7.1.1 Scintillation counter (SC)

A scintillation counter (SC) is a counter tube that harnesses the light-emitting
phenomenon (fluorescence) of a solid substance. Fig. 7.1 illustrates its structure. The
photomultiplier (or phototube) has a photocathode on which a light-emitting scintillator
is mounted. When X-rays enter, the scintillator emits light. Upon exposure to this light,
the photocathode discharges electrons toward the vacuum side. The electrons released
are accelerated toward the electrode. The electrode is a secondary dynode, and, upon
collision with it, more electrons are released, which then strike the next secondary
dynode to multiply the number. Repeating this process more than ten times, we can
increase electrons exponentially (approx. 10° times) as they travel through the tube,
ultimately generating an output of pulses of several mV. Generally, Nal single crystals
containing very small amounts of thallium (T1) are used as scintillators. These crystals

are excited by incident X-rays and emit a bluish-purple light.

Blocking matenal Cathode Anode

X-ray

Beryllium window/

Scintillator Photomultiplier

—

Electric signal

Fig. 7.1 Structure of a scintillation counter
Since the amount of light emitted by the scintillator is proportional to the energy of
the incident X-ray photons, the height of the resulting electric pulses is also

proportional to energy levels. The energy of the X-rays can be analyzed, but the
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system’s energy resolution is inferior to that of proportional counters. Noise is relatively
high. With X-rays of wavelengths 3 A or longer, the pulse height of the signal is about
the same as that of noise, making it difficult to distinguish the signal. We can disregard
this problem, since the X-rays used for X-ray diffraction have shorter wavelengths than
CrKo rays (2.289 A).

We calculate the counting efficiency of a counter by dividing the converted pulse
count (not pulse height) by the number of incident X-ray photons. In the wavelength
region used for X-ray diffraction, efficiency is close to 100%. Almost all X-ray photons
entering the scintillator crystals contribute to light emissions and are converted into
electric signals. Fig. 7.2 shows the counting efficiency. As wavelengths become longer,
counting efficiency decreases, due to absorption by absorbers in the path and the

window material.

Characteristic X-rays A Mo Cu ©Co Fe Cr

" T I N Y
SC Mal F?ﬁ"""---.._____

80 {

£ £0 b

g PC( Xe)| \\

£ GMGC{Ar)

il a0

E

£

3

S

y /

A
ra
'I
Counter =& Length Window material

1} )kﬂ.S 1.0 [.5 2.0 2.5
Absorptionedge Xe I

Wavelangthh {E"}

Counter | Length (mm) | Window material
Geiger Ar 550 mm Hg 100 Mica 0.013 mm
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Scintillation Nal (TI) 1 Be 0.13 mm

Fig. 7.2 Counting efficiency of the counter (calculated value)
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7.2 Electronic circuit panel

We explained above that the scintillation counter converts received X-ray photons into
an electric pulse signal. Since the pulse height is proportional to the energy of the
photons, only the electric pulses of a certain pulse height need to be counted. The
electronic circuit panel (ECP) is an electronic device that performs counting (recording).
Fig. 7.3 shows a block diagram of the electronic circuit panel. In most cases, the
scintillation counter (SC) and preamplifier are integrated into a single unit, shown as a
single block in the diagram. Following impedance conversion by the preamplifier, the
main amplifier amplifies the signal and feeds it to the pulse height analyzer (PHA),
where pulses of unnecessary pulse heights are deleted. The signal then enters the scaler
and is read by a computer. The scaler counts the pulses received as a signal within the
time set for the timer (fixed time or preset time) and outputs the count as a digital signal

to a computer.

‘ Detector F» Preamplifier

A
h 4
High-voltage Main Pulse height
power supply amplifier > analyzer B Scaler
PC

(scaler timer)

Fig. 7.3 Block diagram of counting equipment
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7.2.1 Pulse height analyzer functions

If we measure X-rays (monochromatic X-rays) of a certain energy level with a
scintillation counter and analyze the height value of the obtained pulses with a pulse
height analyzer (PHA), we obtain a distribution curve similar to the one shown in Fig.
7.4. The horizontal axis indicates the pulse height value, while the vertical axis shows
the incident pulse count or number of incident X-ray photons. Called a pulse height
distribution curve, this curve expresses the energy spectrum of the measured X-rays.
This distribution curve can be contracted or expanded horizontally by adjusting the
amplifier gain or voltage supplied to the detector. By appropriately adjusting these
parameters, we obtain a curve with two peaks, similar to the one in the figure. The
pulse height value on the horizontal axis produces a peak near the center, which reflects
the energy distribution of incident X-rays. The other peak at the zero pulse height
position corresponds to electrical noise. The PHA eliminates this noise and the broad
slope section of the peak on the high-pulse-height side. This function is called
discrimination. The width of the accepted pulse height values is called the window
width. If the window width is set, only the pulse signal within that width is sent to the

scaler. The PHA also provides this function.
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Fig. 7.4 Pulse height distribution curve of scintillation detector
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Fig. 7.4 shows the distribution curve obtained from observations of CuKa X-rays
using an SC. The distribution curve is wide, with a peak position at the center, due to
the energy resolution of the SC. If E indicates the pulse height value of the peak and ¢
represents the full width at half maximum, the following equation gives energy

resolution n of the counter. This is usually given as a percent value.

n=(¢&/E)x100(%) (7.1)

Although the energy resolution is near-constant relative to X-rays of a certain
energy, the value changes when we replace the counter. Thus, this is understood as a
capacity specific to the counter. For example, if we use a proportional counter (PC) to
measure monochromatic X-rays with a very narrow energy width, the measurement
will always show a certain distribution pattern. This is because one of the factors that
determine the energy resolution of a counter is the “fluctuation” that occurs during the
process of converting X-ray photons into an electric signal inside the detector. In the
case of an SC, the number (N) of primary electrons caused by the photocathode of the
photomultiplier is N = 3/sec to 6/sec for CuKa X-rays. The statistical fluctuation is (N)* =
1.7 to 2.5. Calculating {(N)”/ N} x 100(%) yields 1 / (N)” x 100(%) = 40 to 60%. Thus, the

energy resolution is 40 to 60%.

7.2.2 MiniFlex Il measuring instrument

The MiniFlex II is designed to allow direct control of the measuring instrument from the
screen of a PC connected to the unit. Refer to the manual for detailed operating
procedures and startup/shutdown procedures. The MiniFlex II incorporates the
following notable safety features:

1) X-rays are not generated when the equipment is turned off.

2) Opening the door of the sample chamber closes the shutter and automatically shuts

down X-ray generation.
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3) The shielding function is calculated and designed to prevent X-ray leaks during
measurements.
4) Note that removing components or parts without permission or intentionally

disabling safety measures will compromise safety.

Problem 1.1 The X-ray tube was removed. Now, a drop of water is visible on the
window. Describe the correct countermeasure.

Problem 1.2 If the water circulating pump stops or the door of the sample chamber is
open, the Ready lamp does not turn on, and the equipment cannot be set to X-Ray ON.
What other reason might prevent X-Ray ON?

7.3 Selecting the X-ray tube

Fig. 7.5 shows a graph of measurements of diffracted X-rays from the plane (311) in

FesOs (powder) using five different types of X-ray tube. A K filter was used for all

measurements.
12000 ' 3 ¥
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10000 |- -
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Fig. 7.5 Differences in peak position and peak/background ratio of tubes

The wavelength of the Ko rays generated by the Mo tube is shortest, followed by

the Cu, Co, Fe, and Cr tubes, in that order. The angle of the diffracted beam shifts
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toward the high-angle side in the same sequence. The Cu tube is typically used in
powder X-ray diffraction because it offers high power and a wavelength in a relatively
easy-to-use range. Short wavelengths result in dense clusters of reflections (peaks); long
wavelengths limit the number of observable peaks. This graph shows that peak
intensities and peak/background (P/B) ratios vary significantly depending on the type
of tube used. The background value differs greatly from tube to tube, primarily due to
the fluorescent X-rays from the sample.

A Cu tube is not suitable for samples containing Fe because the wavelength of
X-rays generated by the tube is suitable for exciting fluorescent X-rays from Fe, causing
high backgrounds. If you wish to analyze Fe-based samples by the K@ filter method, we
recommend using an Fe X-ray tube. Using the diffractometer with a spectrometer on the
receiving side (also called a receiving monochromator) eliminates not just KB, but
fluorescent X-rays. The background will remain low, even if you use a Cu tube to
measure Fe samples. Using the Cu X-ray tube with a diffractometer equipped with a
receiving monochromator is now becoming more common for all sample types. As
shown in the diagrams, if the Fe-based samples are of the mainstream type, the
intensity of diffracted X-rays will be several-fold stronger with a Co tube (with
monochromator) than with the Cu tube, a nonnegligible advantage.

Fig. 7.6 compares the data for an Fe material measured with an Mo tube and a Cu
tube (with monochromator). In both graphs, we detect an o phase and a y phase.
However, a careful comparison shows more oFe in the data obtained with the Mo tube.
Due to X-ray absorption, X-rays from the Mo tube penetrate deeper into the sample
than X-rays from the Cu tube, and the ratio of the a and y phases changes with depth!?.
This Fe sample has more o phase in the deeper layers than in the surface layer. However,
reaching this conclusion requires measurements with X-rays of two different

wavelengths.

1% We can calculate the difference in analysis depth using the equation in §3.6.
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Fig. 7.6 Differences in data obtained with Mo tube (left) and Cu tube (right)

7.4 ldeal tube voltage and tube current

If V and V. indicate tube voltage and excitation voltage respectively, the intensity of
characteristic X-rays is proportional to tube current i and to the n power of (V — V.). We
can achieve stronger intensity by increasing the tube voltage in the region near the
excitation voltage and by increasing the tube current once the tube voltage reaches a
certain level. Table 7.1 shows the most appropriate tube voltage for different tube types.
For Mo tubes, which have high excitation voltage V., the tube voltage is set high. For Cr
tubes, which have low excitation voltage, the tube voltage is set low.

Continuous X-rays are proportional to the square of the tube voltage and to tube
current. However, they only increase the background in normal X-ray diffraction data.
For characteristic X-rays, the tube voltage that results in maximum intensity is not the
tube voltage that results in the highest peak/background (P/B) ratio. Table 7.1 shows the
results of various measurements. A receiving monochromator removes continuous
X-rays, allowing us to select the condition that provides maximum intensity. If we use a

Kp filter, we must also select the condition that achieves the highest P/B ratio.
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L Suitable tube voltage (kV)
Tube Excitation Mo Y R
voltage (kV) Naximum aximum
intensity ratio
Mo 20.00 60 45-55
Cu 8.86 40-55 25-35
Co 7.71 35-50 25-35
Fe 7.10 35-45 25-35
Cr 5.98 30-40 20-30
Table 7.1 Suitable tube voltage

7.5 Relationship between divergence slit width and irradiated
width

Irradiated width A on a sample is determined by the size of the divergence slits (DS)
with divergence angle 2/, distance R (goniometer radius) between the X-ray focal point
and the center of sample, and diffraction angle 20. This can be calculated using the
equation shown below. Since the irradiated width differs from the left side to the right
side of the sample (side closer to X-ray source and side farther from the X-ray source),

the sum of the two is called the irradiated width.

A=Al +A42=[l/sin(0 + p + 1/isin(0— P] R sinf

Fig. 7.7 shows the irradiated widths in the MiniFlex II with the goniometer radius R
of 150 mm when we use standard slit DSs with divergence angles of 1.25° and 0.625°.
The sample width on a standard sample plate is 20 mm. When DS = 1.25°, the irradiated
width is smaller than the sample width in the angle range of 20 > 20°. But caution is in
order, since the irradiated width exceeds the sample width at lower angles. If DS =
0.625°, 20 exceeds 10°, allowing us to obtain a diffraction profile with the correct
intensity ratio.

Note: The goniometer radius varies from model to model and can be 285 mm, 185

mm, 150 mm, and so forth. If we use a DS with the same divergence angle in these
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goniometers, the irradiated width will vary widely. If we regard the DS that results in
an irradiated width of 20 mm at 20 = 20° as a standard DS, the equivalent DS for each

goniometer radius is as follows:

R=150 mm — DS =1.25°
R=18mm —>DS=1°
R =285 mm — DS =2/3°
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Fig. 7.7 Irradiated width of MiniFlex IT (R = 150 mm)

7.6 Depth of sample to be analyzed

Since all samples absorb X-rays to a certain degree, we must know the depth to which
the X-rays penetrate before analysis. If the sample has a crystal layer distributed along
the axis of thickness, it is especially important to identify the X-ray penetration depth of
the sample to be analyzed. In addition, we need to consider whether the thickness of the
prepared sample is suitable. Suppose we analyze a sample prepared on a glass plate
and the data obtained shows a diffraction profile corresponding to an amorphous
substance (often called a halo profile). If the sample has a small z/p value, based on the

knowledge just gained, we will realize immediately that the profile is due to the halo
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generated by the glass plate.

Consider the thickness of sample that would allow it to be considered semi-infinite.
The ratio G: of the intensity of diffracted X-rays obtained from a sample of finite
thickness to the intensity from a semi-infinite sample is defined by the following

equation:

Here, we substitute Kt for - In (1 — Gt).

Kt=2ut/sin @ (7.2)

Consider the meaning of Equation 7.2 under conditions where the incident angle
(6=90°) results in maximum penetration. For example, estimate Kt when the penetrating
distance reaches 90% of the semi-infinite case. The calculation of -In(1 — 0.90) yields Kt =
2.3. If ut is half of that value, 1.15, it is acceptable. In the case of a semi-infinite sample,
the calculation yields ut = 3.45 based on Kt = 6.9, if we assume Gt = 99.9%. Based on this,
when we use the reflection method, a thickness that satisfies ut = 3 is sufficient. If we
use the transmission method, on the other hand, a sample thickness of about ut =1 is
suitable. This thickness reduces the intensity of transmitted X-ray to 1/e, but this
corresponds to Gt = 90% according to Equation 7.2. The intensity of the diffracted

X-rays decreases if the thickness exceeds or is less than the value above.

7.7 Irradiated height above the sample to be analyzed

Just like the irradiated width on the sample, the irradiated height above the sample

needs to be estimated in advance. The irradiated height is determined by the basic
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layout of the optical system and does not depend on the diffraction angle, making it
relatively easy to manage. Fig. 7.8 shows the basic layout of the incident-side optical
system, viewed from the side. F indicates the focal point of X-rays. The vertical length
represents the size of the focal point. The focal length and DS slit height are both set to
10 mm. Since Soller slits are located between F and DS, the beam height remains the
same between them, as shown in the diagram. After the beam passes through the DS
slits, it spreads in a divergence angle to the degree allowed by the Soller slits. This is
shown in Fig. 7.8. The intensity is uniform at the 10-mm section at the center. The
vertical spread is the divergence allowed by the Soller slits. The intensity is reduced by

the penumbra effect.

DS S_

F I/
Soller slits |\

DS—S = 58 mm, Soller slit divergence angel = +2.5°
Irradiated height = 10 mm + 2 * 58 * tan2.5° = 15.06 mm

Irradiated
height

Fig. 7.8 Trradiated height (MiniFlex IT)

7.8 Relationship between slit width and resolution

Equipment resolution is determined by the optical system used in the diffractometer.
How well diffracted X-rays in proximity can be separated is sometimes assessed to
determine equipment resolution. The “five fingers” that appear in the scattering angle
range betwee 67° and 69° when we analyze quartz with CuKa rays are frequently used

for this purpose. Three interplanar spacings show close values, and the diffracted
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X-rays overlap. The diffracted rays of Ka: and Koz begin to separate to create a total of
six diffracted X-rays. However, since the diffracted Koz rays from the second lattice
plane and the diffracted Kou rays from the third lattice plane overlap, we observe five
peaks. Fig. 7.9 shows data comparing the resolution of the five fingers measured with a

goniometer with R = 185 mm while varying RS width!! and DS width.

. -
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&7 Iﬂa ‘ [ 7 lS &3
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RS=0.6,0.3, 0.15 mm (from top down) DS =4, 2, 1° (from top down)

Fig. 7.9 Slit width and resolution

If the RS width on the receiving side is increased two-fold, then four-fold,
integrated intensity increases by approximately two-fold and four-fold —but resolution
decreases. Since the sample itself has a peak width, the RS width should not be reduced
unnecessarily at the cost of intensity. In many cases, we use a value of RS=0.3 mm (R =
150 to 185 mm). The RS equivalent to RS = 0.3 mm for R = 185 mm is 0.45 mm for R = 285
mm.

The right-hand section of Fig. 7.9 shows the effects of widened DS width on the

incident side. Expanding the irradiated width increases intensity but reduces resolution.

" Tn the MiniFlex II, RS = 0.3 mm, fixed
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7.9 Absorption coefficient 1/ p and background

If the energy of incident X-rays exceeds the energy necessary to excite fluorescent
X-rays from the element occurring in the sample, those X-rays are used to excite the
fluorescent X-rays, reducing the percentage of diffracted X-rays. This weakens
diffraction intensity and increases the background attributable to the fluorescent X-rays.
Here, it is preferable to avoid using X-rays with a wavelength having large 4/p relative
to the primary sample components. For instance, when analyzing the structure of a
material containing Co, Fe, and Mn, we should avoid using CuKoa or CuKp, which are

characteristic X-rays of Cu with a large /p for those elements.

7.10 Shift in diffraction angle due to longitudinal displacement of
sample surface

If the sample surface is displaced longitudinally when we use the focusing method
optical system for the B-B method, the diffraction angle of the observed diffracted beam
will be displaced. This was previously explained in the section discussing the B-B
method. If the sample surface is displaced longitudinally, the sample surface—the
diffracting plane—will not be located on the rotating axis for the 0 rotation of the
sample, resulting in an incorrect diffraction angle with respect to the diffractometer.
This diffraction angle deviation A2@relative to the off-center distance AL is given by the
following equation: A26=—tan"(2AL cos 6/ R).

Fig. 7.10 shows how the A28 calculated using this equation changes relative to
the diffraction angle 26. Even a small displacement in the sample position of 0.1 mm or
0.05 mm will generate a significant error when the diffraction angle 20 becomes small.
In general, the higher the diffraction angle 20, the smaller the error. Ideally, we should

use diffracted X-rays that appear at high angles when we require precise measurements
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of lattice constants.
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Fig. 7.10 Longitudinal displacement of sample surface and shift in angle

The shallower glass sample plate provided for use with the MiniFlex II measures 0.2
mm in depth. If a sample is prepared in the ordinary manner, a sample surface
displacement of 0.05 mm will not occur. However, if a sample surface deviation of 0.05
mm should occur, the angle deviation on the low-angle side would be 0.04° at most. If
the purpose of the analysis is to identify the sample (qualitative analysis), this deviation
falls within the permissible range, and no problems result. The angular accuracy of the
MiniFlex II is 0.01° to ensure sufficient precision, even for precision measurements of
lattice constants. To take advantage of this precision, it is important to reduce sample
surface error (i.e., the deviation attributable to human factors) as much as possible when

preparing samples to obtain data with excellent reproducibility.

7.11 Reproducibility of intensity of diffracted X-rays

Measuring the intensity of diffracted X-rays using a diffractometer is equivalent to
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measuring the diffracted X-rays that form the Debye ring. If the sample is characterized
by large crystal grain diameters, the intensity will change each time the sample is
refilled. The reason why is obvious if we examine a Debye ring with a two-dimensional
detector. Here, we'll consider the relationship between grain diameter and intensity
reproducibility by examining a two-dimensional diffracted image.

Fig. 7.11 shows diffracted images obtained in a measurement of the Debye ring by
the reflection method. The measurements were obtained from three different quartz
powder samples with significantly different grain diameters prepared as flat plates.
Coarse grain causes the Debye ring to appear as spots, while fine grain results in a
continuous ring. The ring appears continuous because it is formed of numerous spots.

Fig. 7.12 shows two-dimensional diffracted images obtained from Al:Os powder
samples, isolating the section of the Debye ring near the equatorial line. Diffraction
equipment like the MiniFlex II examines an even smaller area of the Debye ring near the
equatorial line to make a count. When the sample is repacked, the size and the number
of spots appearing in a specific area of the Debye ring change. For small grain sizes, the
number of particles in the irradiated sample area increases, and the number of particles
that contribute to the diffraction increases as well; thus, the change in diffracted spots
becomes small even when the sample is repacked.

To improve the reproducibility of diffracted X-ray intensity, we must grind the
sample to a fine grain using a mortar or other such method. Ideally, when the powder is
rubbed between finger tips, no graininess should be perceivable. Note that organic
crystals require caution: Grinding certain organic crystals can break up the crystals.

Using a sample rotation attachment achieves the same effect as finely grinding the
sample. In-plane rotation of the sample helps average the number of crystal grains
contributing to diffraction. Fig. 7.13 shows the diffracted image obtained from in-plane
rotation of a quartz sample characterized by a large grain diameter indicated at the

bottom in Fig. 7.11. We see that rotating the sample makes the Debye ring continuous,
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just like the one obtained with the sample characterized by a small grain diameter.
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Fig. 7.11 Difference in Debye ring due to quartz Fig. 7.12 Al,0; with different grain diameters and their
grain diameter. Top: Small; Middle: Medium (< Debye rings. Top: 3 um; Middle: 7 um; Bottom: 10 um
50 um ¢); Bottom: Large

Using an ordinary diffractometer, we examined samples with different grain
diameters to examine how in-plane sample rotation would change the reproducibility
of integrated intensity. Without sample rotation, we cannot achieve adequate
reproducibility in the range of grain diameters from 25 to 30 um. Rotating the sample

improves reproducibility to levels that permit use of the resulting data for measurement
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purposes, including quantitative analysis. Without sample rotation, quantitative

analysis would generally require grinding samples to approximately 10 um.

O |4

Fig. 7.13 Effect of sample rotation (using the sample described at the bottom in Fig. 7.11)

7.12 Statistical fluctuations, reproducibility of integrated intensity,
and reproducibility of refilled samples

Measurements of X-ray intensity obtained by a detector contain statistical fluctuations,
which can be expressed by YN, where N is the measured value of the diffracted beam.

Equation 7.3 gives 6 (%), the relative standard deviation:

(%) =N/N x 100

= 1AN x100 (7.3)

In cases in which the background cannot be ignored, accounting for the background
will reduce the value, but the calculated value may be regarded as approximate. If the
integrated intensity reaches 10,000 counts, the relative standard deviation becomes 1%.
In general, varying the scanning speed will change the total number of counts. As we
can see from Table 7.3, which indicates actual data for the integrated reflection intensity
of Al2Os measured at scanning speeds of 20° and 4° per minute, the standard deviation

based on simple reproducibility depends on the total number of counts N. This table
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also includes the results of a reproducibility test with refilled samples. The total number
of counts is almost the same, but reproducibility is poorer with the repacked samples.
The standard deviation is also slightly larger. In general, for measurement errors
proportional to simple YN, extending the counting time improves reproducibility.
However, when the reproducibility for refilled samples is poor, haphazardly increasing
the total number of counts will not improve the accuracy of integrated reflection

intensity measurements. This is worth keeping in mind.

Reproducibility of refilled samples > Simple reproducibility

For the sample shown in the table, refilling the sample did not result in a major

change in intensity. Thus, the grain diameter of the sample can be regarded as small and

uniform.
Simple Simple Reproducibility of
reproducibility | reproducibility | refilled samples
(20°/min) (4°/min) (4°/min)
1 5468 27435 27260
2 5642 27165 28009
3 5587 27091 28051
4 5479 27289 27977
5 5464 27552 28002
6 5508 27460 27517
7 5625 27339 28058
8 5710 27381 27469
9 5792 27498 27868
10 5635 26944 28094
Average 5591 27315 27831
Standard deviation 111 185 284
(%) 2.0 0.7 1.0

Table 7.3 Simple reproducibility and reproducibility of refilled samples for integrated
intensity of Al,O; powder

7.13 Sample preparation and orientation

Using samples with small crystals in disordered orientation is the basic condition for
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powder X-ray diffraction. In many cases, large sample diameters result in uneven
Debye rings and cause spotty images in measurement. It was explained earlier that in
rolled polymer film and metal plates, needle-shaped or flat-plate-shaped crystallites are
often aligned in a specific direction, resulting in an arc-shaped Debye ring, instead of a

circular ring. Let us show an example.

Fig. 7.14 Examples of observed polymer Debye rings. (a) PP (polypropylene); (b) POM (polyacetal)

The Debye ring of polypropylene (PP) in Fig. 7.14 is continuous, while that of
polyacetal (POM) is discontinuous and appears as arcs. The Debye ring for POM
appears as an arc because the lattice planes are aligned in a specific direction due to the
POP orientation matrix. In contrast, the Debye ring for PP is a continuous circle, and no
orientation is observed.

If we measure a sample with the above-mentioned orientation using a powder
X-ray diffractometer, a specific peak will become too strong, preventing use of the data
even for simple identification. In certain cases, not even one diffracted beam can be
detected. As we see in the two-dimensional diffraction profile of POM in Fig. 7.14b, if
we measure the Debye ring on the equatorial line, for example, no diffracted X-rays will
be observed.

Depending on the manner in which a powder sample is prepared and how it is
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packed on a sample plate, an orientation may appear. Fig. 7.15 shows how the
diffraction pattern can change depending on how the sample (kaolinite) is packed on
the sample plate. The greater the amount of the loaded sample, the higher a certain
peak intensity becomes, as we can see in the diagram. Even flat-plate-shaped or
needle-shaped crystal powder will have orientation, depending on the pressure applied
when packing the sample on the sample plate. Thus, preparing samples requires a

certain amount of care.

o Packing 1
B o000 | =200mg
£ =170mg
-;. 4000 =120mg
< 1 :
w00 | (from on high

10. 000 20. 000 30. 000 40. 000
2o(")

Fig. 7.15 Amount of loaded powder sample and orientation (sample: kaolinite)



Appendix: Fundamental Theory of X-Ray
Scattering

Thus far, this booklet has discussed the scattering and diffraction of X-rays irradiated
onto a substance, showing how we can obtain information on crystal structure, such as
the arrangement of atoms, by comparing the intensity of diffracted X-rays to available
intensity formulas prepared from theoretical considerations. The subsequent discussion
addresses the scattering theory used to create the intensity formula, focusing on three
selected fundamental topics related to scattering and diffraction, with the goal of
providing the knowledge needed to acquire information on crystal structures by

comparing theory to the results of X-ray diffraction experiments on crystals.

A. X-ray Scattering Caused by Atoms

A molecule is composed of two or more atoms. A substance
comprised of atoms and molecules can be regarded as an
aggregate of atoms, and the X-ray scattering and diffraction
phenomena caused by a substance are described as a collection of
waves scattered by the atoms present in the interference region of
the incident X-rays. The following focuses on X-ray scattering
caused by atoms, the most basic of these phenomena.

A1 Plane waves and spherical waves

Electromagnetic waves are lateral waves deflected in the direction perpendicular to the
direction of propagation of the electromagnetic field. If the electric field vector in the
direction of deflection is E, and the unit vector in the direction of propagation is s, the

following equation describes the lateral wave:

E exp[— 2711(%}" + 2;;{%}) (A-1)
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In Equation A-1, r indicates the position vector, t represents time, and A is
wavelength. E is the electric field vector; its magnitude expresses X-ray amplitude.
Equation A-1 can be expressed as follows by substituting wave number vector k for

27 s/, and angular frequency o for 27 c/A (= 2zv, where vindicates frequency).

Eexp {-ikr +iot} (4-2)

This equation becomes easier to use as we become accustomed to it. We will use it
in the following. Spherical waves are used to express waves that disperse in all
directions from a point light source. Since amplitude falls off in direct proportion to the
square of distance r from the light source, dividing Equation A-2 by r results in an

equation for spherical waves.

E exp {-ikr + iwt}/r (4-3)

The equation for expressing electromagnetic waves is needed to account for
scattering and diffraction phenomena. Since wave intensity can be obtained by
multiplying it by conjugated wave, E exp {ikr - iwt}/ r, it is the square of amplitude, E?.
The field of spherical waves is E%/r?. This indicates intensity is inversely proportional to
the square of the distance. Note that E? is proportional to the energy of the
electromagnetic waves.

Readers unfamiliar with using an exponent function in an equation for expressing
waves can convert the exponent function to the sine function exp(x) = sin(x) + i cos(x) and

regard it as the first term.

A2 Thomson scattering

A substance is an aggregate of atoms. An atom consists of a nucleus and electrons. Both
the nucleus and electrons carry an electrical charge. Since X-rays are electromagnetic

waves, it is reasonable to regard X-ray scattering as the scattering of electromagnetic
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waves by charged particles. While the charged nucleus does contribute to scattering, we
will see that this contribution is negligible compared to the scattering by electrons and
can generally be ignored. We will consider only X-ray scattering caused by electrons.

There are two scattering processes, differing in whether energy is transferred
between X-rays and electrons. The process free of energy transfer is called elastic
scattering; scattering involving energy transfer is called inelastic scattering. Thomson
scattering is elastic scattering, while Compton scattering is inelastic scattering.
Although X-rays are electromagnetic waves, they also behave like photons, with energy
hv. Compton scattering describes the process whereby energy is imparted to electrons,
releasing them from atoms, while reducing the energy of the X-rays—that is, to
lower-frequency X-rays. The reverse of this scattering process, called inverse Compton
scattering, involves frontal collisions of visible rays with electrons accelerated by high
energy, imparting the low-energy visible rays with energy from the electrons and
changing them to high-energy X-rays. Researchers are currently harnessing this process
in attempts to create powerful X-ray sources.

Diffraction experiments that examine the structures of substances address elastic
scattering only. Although some free electrons do not belong to any atom, most electrons
are bound to specific atoms or molecules. Exposing such electrons to the electric field of
incident magnetic waves results in forced oscillation, causing the electrons to oscillate at
the same frequency and generating electromagnetic waves at this frequency. The
amplitude of these scattering waves is given by —(e?/mc?), and the process is called
Thomson scattering.

As shown in Fig. A-1, if the incident electromagnetic waves are biased toward the
direction perpendicular to the plane (the scattering plane) that includes the incident
X-rays and scattering X-rays, the scattering waves will also deflect in that direction.
Since the scattering intensity (given by the square of Thomson scattering amplitude,

(e?/mc?)?) does not change within the scattering plane, isotropic scattering results. Here,
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the scattering plane refers to the plane that includes the direction of the incident wave
and the direction of the scattering wave.
e’ e

2+ (— )}/2
mclj {mcE}}

{ cos?20 (

However, effect of polarization
becomes obvious on its detection

an electron

w20

o & n Polarization

Direction of electric field /

cos 20
Fig. A-1Effects of biased electromagnetic waves
If the waves are biased toward the plane, the amplitude viewing angle depends on
scattering angle 20, and the correction cos20 is necessary. Since intensity is the square of
the amplitude, cos?20 (e*/mc?)* is given. Since X-rays polarized in the vertical and
horizontal directions do not interfere with each other, we can obtain scattering intensity

simply by averaging the intensity of the X-rays polarized in those two directions.

{(1 + cos’20)/2) (&/mc’)’  (4-4)
The coefficient (1 + cos?20)/2 in Equation A-4 is called the polarization factor. When
the distance from the scatterer to the point of observation is given by R, scattering
intensity is inversely proportional to the square of R. If the accepting solid angle is d(2,

scattering intensity must be as follows:

{(1 + cos’20)/2) (&/mc?)’ AR’ (A-5)
However, d(2/R? can be considered as a commonly appearing coefficient. Thus, we

will briefly exclude it from the following discussion.
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A3 X-ray coherence

Now, we’ll discuss X-ray coherence. The use of the term, “coherence” is not limited to
X-rays and can refer to wave phenomena generally. If two waves are coherent, they can
be added as sine waves. In such cases, coherence occurs when one wave causes elastic
scattering at a certain location and coincides with the original wave. If the wave
generating source or time differs, the waves become incoherent and must be treated as a
different phenomenon entirely. First, the two waves must have the same frequency, but
sound waves and electromagnetic waves with a relatively low frequency tend to be
coherent. In comparison, light waves and X-rays are low in coherence, since emitted
light and X-rays become wave packets and their duration time and duration range are
finite. Coherence can be observed within that range. Both light and X-rays can be
considered partially coherent.

We know of no experiment in which the coherent domain of X-rays from an
ordinary X-ray source has been accurately measured, and we will avoid giving a
specific value. The author’s personal estimate is a value on the order of several tens of

microns.

A4 Phase difference and scattering vector

Assume two scatterers at locations P and Q separated by distance r, as shown in Fig.
A-2. If a plane wave given by wave number vector ki (1kil=27/1) is irradiated and
scatters in the direction given by the wave number vector kr (lksl=27/1), the path
difference between the wave scattered at P and propagating in the direction of kf and
the wave scattered at Q and propagating in the direction of ks is P'Q - PQ’. PQ’ is a

component of PQ (= r) in the direction of kf-, which is equivalent to the scalar product of
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r and the unit vector of kr. P’Q is a component of r in direction ki-, and the scalar
product of the unit vector of that direction. Since the size of ki and ky is 27/4, kir — kr

indicates the phase difference ¢ of the wave, and ¢ can be expressed by Equation A-6.

p Q ~

Wave vector k;
Wave vector k;, — r / for scattered
for incident X-rays A\ X-rays
pQ
Kk, & N
i E K Scattering vector
k.

Pass difference =P'Q - P(Q’
Phase difference = ( Pass difference )x(2n /1)

Fig. A-2 (a) Phase difference and (b) Definition of scattering vector
¢=kir—kr
= (ki- ky) r = Kr (4-6)

We substituted K for ks — ki here. K is called the scattering vector. K is the vector
connecting the end of ki and the end of ky, as shown in Fig. A-2b. Since 20 is a scattering
angle, the size of K is given by 4x sin 0/A. Using K, the angle ¢ indicating phase
difference can be expressed by the scalar product Kr of K and r (vector expressing the

distance between P and Q).

A5 Scattering amplitude

Suppose electrons are positioned at locations P and Q and an X-ray beam is irradiated

from the direction ki and scattered in the direction ks Based on the positions of the
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waves scattered from P and Q, we can obtain the amplitude of the scattering wave by
addition. When electrons are located at P and Q, the scattering amplitude is the same
(e?/mc?). If location P is the origin point of the coordinates, the wave scattered at location
Q has the phase difference Kr, We need consider only that phase difference when
adding two scattering waves. The amplitude of the scattering wave can be expressed as

follows:

(@/mc’) + (&/mc?) exp { - i Krg }
= (@/mc){ 1 + exp(-iKro)}  (4-7)
We will consider the polarization factor when we discuss intensity. Meanwhile, we

extract the term for amplitude from Equation A-7 and indicate it as A, as follows:

A= (/mc’) {1 +exp(-iKrg)} (4-8)

Equation A-8 means that the contribution of the scattering wave from Q is only
exp{-iKro} because it has phase difference Kro from the scattering wave from P. Such
contribution is called the phase term. Note that A in this case is not a real number but
the following imaginary number: A = A-+iAi(, A? = AP + A?).

If multiple scatterers (a number, N) are located at ri, 1, ..... rn, the aggregate of such
electrons causes scattering. To determine the scattering amplitude A(K) of the waves
propagating in direction ks, we can superimpose the scattering waves by considering

the phase of each wave. Then, we can express scattering amplitude, as follows:

2
e

N
> expl-ikr,) (4-9)

Jj=0

AK)=

2
mc

If the scatterers are continually distributed with density po(r), only the sum in
Equation A-9 needs to be replaced by integrating, as follows:
€2

AK)= 5 Jp(r)exp(—ikr)dr (4-10)

mc

volume
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Equation A-10 has interesting and important implications. The scattering
amplitude A(K) is the Fourier integral of density distribution p(r). Since the scattering
intensity I(K) is proportional to the square of scattering width, multiplying the square of
the Fourier integral of the density distribution p(r) of scatters, which is A*(K)A(K), by
the polarization factor gives scattering intensity. Additionally, while density distribution
p(r) is given as the function of position r in real space, the scattering intensity obtained
in a scattering experiment is the K-space obtained by the Fourier transform of the
density distribution. In other words, it is given as the intensity distribution I(K) within

the space expressed by the scattering angle size | K| (=sin /1) and direction K.

A6 Atomic scattering factor of X-rays

Let’s consider X-ray scattering caused by atoms with a sizable number of electrons or
ions. When its charge density is pwon(r), the scattering amplitude f(K) is given by the
quantity determined by the Fourier integral of pwom(r), as you can easily understand

from Equation A-10.

J0K) = Daon(®) explikridr  (4-11)

The f(K) above is called the atomic scattering factor or amplitude. If the wave
function ¢(r) of the electrons in the atom is known, we can obtain p(r) by calculating the
density distribution p(r) = Zj¢(r)*¢(r), and calculating the Fourier integral. Since atoms
are bonded in a crystal, the charge density distribution is not necessarily spherically
symmetrical. However, since the ratio of nonspherically symmetrical electrons to
spherically symmetrical electrons is (except in the case of light elements) very small, it is
regarded as spherically symmetric to a first approximation. Specifically, we use the
radial distribution function for spherical symmetry obtained by the Hartree-Fock

approximation to calculate Equation A-11. This numerical calculation was performed
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by computer, and the result is posted in the International Table for X-ray Crystallography,

Volume IV. The calculated value can be used as a reference value.

O 0T 02 03 04 05 05 07 08 03 10 11
=08 (A1)

Fig. A-3 Atomic scattering factor

By referring to the table, we plotted the values of f(K) for several types of atoms in
relation to the size of the scattering vector, sin @1, in Fig. A-3. In general, the value of
the atomic scattering factor becomes small when the value of sin &/4 increases (when the
scattering angle is large). This indicates the scattering is forward scattering. X-ray
scattering by one electron is isotropic scattering, setting aside the polarization factor.
But if atoms have the electrons surrounding the nuclei with density distributions
similar to the spherical Gaussian distribution, forward scattering results. When the
scattering angle becomes large, intensity falls dramatically. We know from Fourier
transform mathematics that the Fourier transform of a Gaussian function is itself a
Gaussian function. Furthermore, as we can see from Equation A-11, since the value f(0)
when K = 0 is the integration of all charges p(r), the atomic number is Z in the case of the

neutral atom. As such, the value of the scattering factor is proportional to the atomic
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number. When the atomic number becomes large, the difference between adjacent

atoms in the periodic table becomes relatively small, making it difficult to distinguish

by X-ray diffraction.

A7 Anomalous dispersion



B. Diffraction by Crystals

Crystals are composed of atoms and molecules arranged in orderly
lattice patterns. X-rays irradiated onto a crystal will scatter. When
the Laue condition is met, diffraction occurs. In the following, we will
demonstrate that diffraction is nothing more than Bragg reflection.
We will also demonstrate how diffraction intensity can be expressed
by an equation and what kinds of variables of structure it contains.
X-ray scattering from a sample with periodic charge distribution is,
mathematically speaking, a Fourier transform of the density
distribution with periodic structure. The following section shows that
the resulting K-space is also periodic and is called the reciprocal
lattice space. The section also describes the geometrical
arrangement of the sphere envisioned by Ewald in the reciprocal
lattice space. As stressed by Ewald, understanding this helps grasp
X-ray diffraction by crystals.

B1 Scattering and diffraction of X-rays by crystals

For clarity, assume that the unit cell is a three-dimensional orthorhombic crystal lattice
with edges a, b, c. Further assume that its charge distribution is pwn (x, y, z). We will
discuss the arrangement of atoms in the unit cell in a later section. A crystal lattice is
formed by this unit cell arranged in the numbers M, N, and P in directions a, b, and ¢,
respectively. The X-ray scattering amplitude from a unit cell is given by the Fourier

transform of the charge distribution of the unit cell, as follows:

Jpeen(r) exp{iKr} dr = F(K) (B-1)
The integration is expressed with F(K), as we see in Equation B-1 above. This is
called the crystal structure factor or structure factor. Next, consider the scattering
amplitude Funp(K) from the unit cell of a crystal lattice located at a distance of ma + nb +

pc (where m, n, and p are integers satisfying the conditions 0 <m <M, 0<n<N, and 0 <
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p < P). Since this is located ma + nb + pc from the unit cell at the origin, it is expressed as

having the corresponding phase difference.

F(K)exp{-iK(ma + nb + pc)}  (B-2)
MISSING FIGURE
Fig. B1
Fig. B1 illustrates this condition two-dimensionally. If we extend this and consider
scattering amplitude A(K) from the crystal of size MNP, we see that this is the m, n, p in
Equation B-2 integrated from 0 to M, N, P. Thus the following equation will be

obtained.

A(K) = F(<) « {25" exp(-i mKa)} {2 exp(-i nKb)} {25 exp(-i pKe)}  (B-3)

In Equation B-3, Ka, Kb, and Kc indicate the scalar products of the scattering vector
K and the lattice vectors a, b, and c of the unit cell.

The next step is to calculate the sum {30 exp(-i mKa)} of the exponent function, a
relatively easy step. It is given by sin (M Ka /2) / sin (Ka /2). Drawing a graph shows that
this function has a positive or negative peak at the position at which Ka/2 is an integral
multiple of n. We introduce here three Laue functions, La, Lb, and Lc, obtained by

squaring this function.

{sin (M Ka /2) /sin (Ka/2)} > = La
{sin (M Kb /2) /sin (Kb /2)} > = Lb
{sin(MKc/2)/sin(Kc/2)} > =Lc  (B-4)
Scattering intensity I(K) is proportional to the square of the amplitude A(K), and

can be expressed as follows:

IK) ~ r’{(I+cos 20)/2})|F(K)’LaLb Lc (B-5)

Here, r. is the Thomson scattering factor (F(K), crystal structure factor), and L, Ls, Lc
are the Laue functions introduced by Laue. Equation B-5 expresses scattering intensity

in direction k that results when X-rays are irradiated onto one crystal from direction ko.
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We can account for distance R from the sample to the detector by adding the
attenuation term 1/R? but since this is a shared proportional constant, we omit it here.
More importantly, the intensity shows the profile given by the Laue function and is

proportional to the square of the structure factor, | F(K) | 2.

B2 Laue function

The Laue function is defined by Equation B-4. With Ka/2 = x as a variable, let’s calculate
the function L(x) = {sin (Mx)/ sin xf*. Fig. B2 is a graph at M = 20. This function results in
a sharp peak at the position at which x is an integral multiple of  and a low crest at the
position that is an integral multiple of n/M (n /20 in the above diagram). We observe an
acute peak at x = hn (h can be any integer, including 0), and its value is M?. The peak
width is n/M. Since M gives the size of the crystal, the peak value becomes a very large
value. The larger the crystal, the greater the large peak becomes, while small peaks
become increasingly smaller. We need to focus only on the large peak, which is located
at the position at which this function results in a value. This is x = n/M. However, if the
crystallite is small or for thin-film crystals, M is countable, and caution is advisable. We
need to note that the peak width is proportional to 1/M and that peak width increases
with reduced crystal grain size.

In Equation B-3, Ka /2 corresponds to x. When h, k, and ¢ are integers and K satisfies
the following condition, the functions, L, Ly, and L., have a sharp peak. In other cases,

the value approaches 0 when M, N, and P assume large values.

Ka=27zh Kb=2mk Kc=2al (B-6)

This equation means scattering intensity is high where scattering vector K satisfies
the indicated condition but approaches 0 in other locations. The condition given by

Equation B-6 is called the Laue condition. The intensity formlua in Equation B-5
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indicates that scattering intensity becomes high at locations where the scattering vector

K satisfies the Laue condition.

A0 % N =120 N
100+
2004
100H
JAVN L ol Ix
0 2/1 x 3rj2

Fig. B2 Laue function

As mentioned earlier, K is a vector defined within K -space. We select the basic

vectors a’, b’, and ¢’ in that space and express vector K as follows:

K=at+b'n+c'¢ (B-7)
In the Equation B-7, & 7, and § are the coordinates of the components of the vector
K in the directions a’, b’, and ¢’. If we attempt to seek the condition in which K satisfies
the condition in Equation B-6, we can verify that a’, b’, and ¢’ have the following

relationships with vectors a, b, and c defined in real space.

a'a=2r b'a=0 c'a=0
a'b=0 b'b=2r c'b=0
a'c=0 b'c=0 c'c=2z7 (B-8)

If the values of & 7, and ¢ are integers, h, k, and {, the condition in Equation B-6 is
satisfied. For confirmation, substitute K= a’h + b’k + ¢’{ in the left-hand side of Equation
B-6 and confirm that we can obtain the result on the right-hand side of the equation

under the conditions in Equation B-8. That is, the Laue function in K space constitutes a
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lattice point with a’, b’, and ¢’ as fundamental vectors; assumes the value (MINP)? at the
lattice point; and has widths proportional to 1/M, 1/N, 1/P in the directions a’, b’, and c¢’.

Consider the following vector whose fundamental vectors are a’, b’, and ¢’

Guw=ah+bk+ct (B9
Here, h, k, and ¢ are integers. This equation expresses the lattice in K-space with a’,
b’, and c¢” as a unit cell. This lattice is called the reciprocal lattice, while a crystal lattice
whose fundamental vectors are a, b, and c is called a lattice in real space. Equation B-10,
a modification of the conditions in Equation B-8, represents the relationships between
a’,b’, ¢’and, a, b, ¢, which are lattices in real space.
a = 2n[bxc]/a-[bxc]

b = 2n[cxa]/a-[bxc]
¢ = 2n[axb]/a-[bxc] (B-10)

When the scattering vector K corresponds to the reciprocal lattice vector in

Equation B-9, the Laue function assumes a value.

K=Gue (B-11)
We can regard this equation as satisfying the Laue condition in Equation B-6. The
fact that strong scattering appears only in a reciprocal lattice in which K is limited by h,
k, and ¢ means that scattering waves interfere with each other. The beam scattered in the

direction specified by &, k, and ¢ is called the h k £ -diffracted beam.

B3 Lattice in real space and reciprocal lattice

The reciprocal lattice G e defined by Equation B-9 and Equation B-10 has a close
relationship to a crystal lattice in real space, as shown below. Consider the lattice plane
in real space specified by the Miller indices &, k, and {. Let’s assign N to the vector in the
normal direction to this plane shown in Fig. B-3 and dwm to the interplanar spacing OP

of the plane & k . The relationship to N can be expressed as follows:
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Suppose vector N of the normal to the plane & k { is expressed as follows using the

reciprocal lattice a’, b’, ¢’ of this lattice.

N =a'étb'y+ ¢ (B-13)

Flane hkt

Fig. B-3 Interplanar spacing expressed by indices hkl

Since a’ b’ ¢’ satisfies Equation B-8 if we substitute Equation B-13 into Equation

B-12, the following equation is obtained:

20E/h=2mn [k =21l/1=dweIN|  (B-14)

The left-hand side of Equation B-14 satisfies the equal condition when & 7, and &
are integers of I, k, and ¢. This means using the reciprocal lattice vector G as the vector
N of the normal direction satisfies Equation B-12. We can obtain the following

relationship:

|G| =27/ dypy (B-15)

This shows that the size up to the reciprocal lattice point, which is | Gl , is in fact
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the value obtained by multiplying the inverse of the interplanar spacing dn specified
by the Miller indices of h k { in real space by 2n. This also means that the vector Gk is a
vector normal to the plane & k £. Based on the relationship indicated by Equation B-15,

we can readily obtain the following equation:

Cr/dw) = a’h+b?iKP+c?F
+2a’b’cosy’hk+2b’C’cosa’kl+2cC acospf’lh (B-16)
In the Equation B-16, «’, £, and ) are the angles formed by the reciprocal lattice
vector pairs b” and ¢/, ¢’ and a’, and ¢’ and a’. The following equations express the
relationships between o/, f#, and y angles and the angles ¢, f, and y formed by the unit

vectors of the lattice in real space, respectively.

cosa’ = (cosfcosy-cosa)/sinpfsiny
cos ' = (cosycosoao-cosf)/sinysino
cosy' = (cosacosp-cosy)/sinasinfi (B-17)

Using the relationships indicated in Equations B-16 and B-17, we can obtain an

equation indicating the relationship between lattice constant and interplanar spacing.

B4 Bragg's law

The value of the scattering vector at the location where the Laue function assumes a

value is given by using absolute values on both sides in Equation B-11, as follows:
Kl =Gl (B-18)

The absolute value of K is 47 sin 0/4. |G el can be expressed by 2a/dw:, as
mentioned in the previous section. Substituting these terms into Equation B-18 gives
the following equation:

2d;1k1Sin 6= (B-]Q)

Equation B-19 expresses the Bragg reflection of X-rays by the lattice plane having
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interplanar spacing d . We see that the Laue diffraction condition, Equation B-6 or

B-11, is identical to the equation expressing the law of Bragg reflection, Equation B-19.

B5 Ewald’s profile

The Laue diffraction condition in Equation B-6 indicates the occurrence of diffraction
when the scattering vector K corresponds to reciprocal vector Guw. This diffraction
condition in a reciprocal lattice space can be visualized as shown in Fig. B4. The
reciprocal lattice is three-dimensional; the illustration shows a two-dimensional cross
section of a reciprocal lattice. The vector K is expressed as K = ks — ki using the wave
number vector ki of the incident wave and wave number vector kr of the scattering wave.
The size of ky, ki is 2n/A; hence, the correspondence of the vector K to vector G means
three vectors, kf, ki, and Gk, constitute an isosceles triangle in reciprocal lattice space.
This means a wave ki traveling from the apex A to the origin of the reciprocal lattice is

Bragg-reflected by the plane h k £ in direction k.

~ Ewald sphere

a4+

Fig. B4 Relationship between a reciprocal lattice place and the Ewald sphere
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Once the incident direction is set, point A is determined, so that a sphere with a
radius of 2m/A is drawn with A at the center. This sphere contacts the origin of the
reciprocal lattice. The reciprocal lattice point G is also located on the spherical surface.
This condition satisfies the diffraction condition.

If the X-ray beam enters from the direction slightly displaced from point A, such as
point A’ shown in the diagram, the sphere drawn with point A’ at the center deviates
from the point G . This means the X-ray beam entered in a direction that does not
satisfy the diffraction condition. The diagram shows that the intensity distribution in
the section of the reciprocal lattice space located on the spherical surface spreads in all
directions from point A and that if the reciprocal lattice point happens to be on the
spherical surface, a Bragg reflection occurs in that direction. This sphere is called the
Ewald sphere. The center of the Ewald sphere is on the surface of a sphere a radius of
2n/A away from the origin of the reciprocal lattice.

As shown here, by drawing a reciprocal lattice and recognizing how the Ewald
sphere is arranged in the reciprocal lattice, we can predict the direction and type of
scattering that will occur. Alternatively, if X-rays are irradiated onto a crystal with a
certain orientation from a certain direction and the diffracted image is captured on film,
the diffracted image indicates where and how in the reciprocal lattice space intensity is
distributed. Drawing the Ewald sphere is highly useful for understanding the diffracted

image.

B6 Crystal structure factor

The crystal structure factor F(K) is defined in Equation B-20 as the quantity of charge

distribution pei(r) in the unit cell after the Fourier transform. The equation is as follows:

F(K) = pea(t) exp{iK-r}dr (B-20)
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Suppose the charge distribution of an atom j in the unit cell is pi(r). If this atom j is
at position r; in the unit cell, we can write the charge distribution pei(r) in the unit cell as

follows:

Pear (V) =2 (Y -1;)  (B-21)
Thus, Equation B-20 can be expressed as follows, given that the atomic scattering

factor of the atom j is fi(K).

F(K) =2ifi(K) exp{iKr;} (B-22)

Here, exp{iK-rj} is a phase term because the atom j is at position r;. In general, crystal
lattices are not stationary, but fluctuate spatially over time due to thermal oscillation.
When the temperature rises, the amplitude of thermal oscillation increases. That is,
thermal oscillation displaces atoms in the crystal from their equilibrium positions. If the

amount of displacement is uj, we can write the atomic position as follows:
n=<r>+u (B-23)
Note that u; changes continuously and is different in each unit cell. Observation

takes time. What we observe is the average value of Equation B-22. Thus, we obtain the

statistical average of the value represented by <>.

(F(K)) = Zy/(K)<exp{iKu>exp{iK<r; >} (B-24)

= 2;i(K) T(K,uy) exp{i K<r; >} (B-25)
In Equation B-24, we set the statistical average of exp{iKu;} to T(K,u;). The result is

the same whether we use the temporal or spatial average.

B7 Temperature factor

Equation B-25 calculates the average <exp{iKu;/> of the exponent function, including the
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displacement u; of atoms from their equilibrium positions due to thermal oscillation.
This is called the temperature factor or thermal factor. The following approximation is

used for the calculation:

<exp{iX}> = exp{ - <X*>/2} (B-26)
If we develop both sides and compare, we find that the above approximation is

valid when X is small. The average of the exponent function is expressed as follows

within this approximation range.

(exp{iKu,t= exp{- 87" <u/>(sin0/})’}
= exp{- B; (sin0/})’}  (B-27)

Here we use the relationship, K? = 472 sin’> @/A?. This coefficient is called the
temperature factor or Debye-Waller factor. <u?> expresses the component of
displacement u; in the direction of scattering vector K. When 872<u;%> including the root
mean square of displacement is replaced by Bj, the result is called the temperature or
thermal parameter. As we see Equation B-26, this is a Gaussian function whose value is
1 when the scattering angle sin €/1 is 0. The value becomes exponentially smaller as the
scattering angle increases. The larger the value of <u?> or B; is, the greater the
attenuation. If we regard the temperature as a correction factor to be applied to the
atomic scattering factor, we see that it is a coefficient that decreases the atomic
scattering factor as the scattering angle increases. If the structure factor is expressed

with the temperature factor, Equation B-25 can be modified as follows:

Fua=Z; f(K) exp{- B; ( sin0/3)°}
xexp{2mi(hx;+ky+{z)} (B-28)
Since K assumes a value only at the reciprocal lattice point & k £, we used h k £. We
also use xj, yj, zi to express the coordinates of the atom equilibrium positions. The

structure factor expresses a quantity that includes two types of parameters: atomic
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coordinates and temperature parameter. Determining the crystal structure means
determining these two parameters (atomic coordinates and temperature parameter).

In the case of X-rays, the atomic scattering factor becomes small as the scattering
angle increases in forward scattering. This can make the attenuation attributable to

thermal oscillation difficult to isolate.



C. Diffraction Intensity Formula

In the previous chapters, we discussed the X-ray incident
conditions that would cause the Laue-Bragg reflection and
examined the equation for expressing the diffraction intensity
obtained based on the assumption of perfect crystal lattices. We
stated that the Laue condition would be satisfied when the
scattering vector K corresponds to the reciprocal lattice vector Gy,
since it would result in a Bragg reflection, in which the intensity of
diffracted X-rays is proportional to the square of the number of
lattices MNP in the crystal that contributes to the diffraction.
However, it is very difficult to confirm experimentally that a
measurement was taken at the peak position. In fact, it is safer to
use a measurement method that includes and integrates the peak.
This is equivalent to integrating the Laue function. Calculating the
integrated intensity shows it is proportional to the number of lattices,
MNP. Explained below is the diffraction intensity formula by
integrating the Laue-Bragg reflection, as well as a number of
required corrections.

C1 Integrated reflection intensity

We might assume that measuring the Bragg reflection by setting up the measuring
equipment so that scattering vector K corresponds to the reciprocal lattice vector G
would provide information on crystal structure, allowing structural analysis. In practice,
it is all but impossible to achieve the condition required for Bragg reflection in a
laboratory. It is not possible to collimate incident X-rays perfectly. Some X-rays are
always measured at locations removed from the peak position specified by the Laue
function. An experiment cannot measure the intensity of Bragg reflection under
conditions in which all incident X-rays satisfy the Bragg condition. How can we resolve

this issue?
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After observing the profile of the Laue function, examining the location to be
measured with high precision in experiments, and studying how to compare
measurements with theoretical values, our predecessors concluded that measuring the
integrated value of the Bragg reflection would allow accurate comparisons to theoretical
values. This technique remains in use. The total number of unit cells in a crystal particle
that cause the Bragg reflection —assumed as N here —becomes N? at the peak position of
the Laue function. Its full width at half maximum is 1/N. If we can integrate the Laue
function at a location near the peak position, the value should be N, since N?x(1/N) = N.
This means that the intensity of the obtained integrated value of diffracted X-rays is
proportional to the total number of unit cells in the crystal lattice. Obtaining the peak
position of the Laue function is difficult in an experiment, but calculating the integrated
value is easy and reliable. The next topic is how we can obtain measurements to achieve
the effect of integrating the Laue function near the Bragg reflection. This is closely

related to the method of measurement.

C2 Integrated reflection intensity of a single crystal sample

The first idea is to obtain the integrated value by positioning one crystallite and
measuring the profile of the resulting Bragg reflection. This requires making incident
X-rays with a wavelength of 1 as close as possible to perfectly parallel, placing the
detector at the corner where diffracted X-rays are received, making the slits before the
detector wide, rotating the crystal at a certain speed, and measuring all reflected X-rays.
Intensity should be measured as energy per unit of time and per unit area. The obtained

integrated intensity J(Gnx) can be expressed as follows:

J(thl ) = ”I(K -Gy )dtdA (C-1)

Here, dA is the area element on the receiving side, while dt indicates measurement
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time. The deviation from the scattering vector K of Bragg reflection is defined as K -Gk
= q (qxqy,9-). As shown in Fig. C-1, when the distance from the sample crystal to the
detector is R and the anticipated angles of received rays are df in the horizontal
direction and dy in the vertical direction and when the crystal is rotated at an angular
speed of w, rotation angle is given by dw = wdt. The integration variable can be

converted to rotation angle dw and receiving angle d/dy.

J (thz ) = R_aj ”JI (q )d wdfdy (C-2)

This is not enough to perform integration. Since the variable for intensity is g, we
need to convert the variables w, f and y to the variables gx, gy, and g- defined within the
reciprocal lattice. If we refer to Fig. C-1, we notice the following relationships.

MISSING FIGURE
Fig. C-1

dg. = (2n/A) df cos 6
dq,= (47/2)sin Odw
dq. = (27/2) dy (C-3)
If we substitute these relationships into Equation C-2 and perform the conversion,

we can obtain the integrated intensity as follows:

2

2 223 2
R F
J(thl): I{njcz J (1+ cos’ 249) A V| (thzl

200, sin 20

(C-4)

Here, Io indicates the intensity of the incident X-rays, V the volume of the crystal
causing the scattering, and vo the volume of the unit cell. Note that R?A3/vew sin 20 is a
coefficient that appears when converting the integration variable. Mathematically, this is
a Jacobian.

This coefficient takes a different form if the method of measuring the integrated
intensity changes. For structural analysis focusing on the relative intensity of the Bragg

reflection, R?A*/wv. is a mere constant and can be regarded as proportional. In contrast,
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the angle-dependent term 1/sin20, called the Lorentz factor, is important. Additionally,
we must consider a polarization factor dependent on the scattering angle included in
Equation C-4. When this is combined with the Lorentz factor, the coefficient that is
dependent on the scattering angle 26 can be summarized as follows: (1+c0s?20)/2 sin 26.

This coefficient is called the Lorentz polarization factor and is abbreviated LP.

LP = (1+ cos’26)/2 5in26 (C-5)

The LP factor is included in the integrated intensity obtained in the measurement of
Bragg reflection in which the window of the counter is opened, the detector is placed at
the position 20 (twice the Bragg angle), the single crystal is set up in advance in the
direction that enables observations of the Bragg reflection, and the Bragg reflection is

observed while the sample is in the w rotation.

C3 Integrated reflection intensity of powder sample

When monochromatic X-rays are irradiated onto a powder sample and the diffracted
image is captured on X-ray film, we observe the well-known Debye-Scherrer ring. Let’s
think of this diffraction condition in reciprocal space. As powder crystals are evenly
orientated in all directions, the intensity distribution in reciprocal space shows a
collection of concentric spheres obtained by rotating the reciprocal lattice of the single
crystal around the origin. The intersection of the concentric spheres and the Ewald
sphere with a length of 2n/A satisfies the diffraction condition. This intersection forms a
circle. X-rays scatter in a conical pattern from the center of the Ewald sphere toward the
circle formed by the intersection. This can be confirmed in a simple geometrical
diagram. We can easily image the Debye-Scherrer ring when this is captured on X-ray
tilm. See Fig. C-2.

Now, let’s examine the equation that gives the integrated intensity per unit length of



185

Debye-Scherrer ring. As mentioned earlier, the intensity distribution in reciprocal lattice
space forms a concentric sphere with a radius equaling the size, | Gnul (= 4n sin 6/1), of
the reciprocal lattice vector Gii and with the origin of the reciprocal lattice at the center.

|Graa| sphere

Fig. C-2 Intersection between reciprocal lattice sphere of powder sample and Ewald sphere

In this case, intensity is distributed uniformly over the spherical surface, but all
reflections equivalent to Ikl are also located on the same spherical surface. The
concentric sphere must be multiplied by the number of equivalent reflections,
multiplicity mw. Or we can regard the intensity of the sphere to be stronger in the order
of the number of equivalent reflections.

When the number of all crystal particles in the sample is N, the following equation

gives the number of particles distributed in a unit area of the spherical surface:

miN /47| G|’ (C-6)

The number of crystal particles that contribute to diffraction equals the number of
particles located at the intersection of the Ewald sphere with radius 2n/A and the
concentric spheres. If the incident X-rays have divergence angle dea, the number of
crystal particles contributing to diffraction equals the number of crystal particles

distributed on the belt with width of Giu da on the spherical surface, as shown in
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Figure C-2. This area is 2nGm cosOGm da. The percentage of particles on the belt of the

total particles distributed over the entire sphere is given below.

N 27|Gl’cosOda/ 47|Gyul’ = N cos@ do/ 2 (C-7)

If the area element on the receiving side is dA4 = R?dfdy, when da corresponds to dw,
and the integrated intensity from one crystal particle to be observed is taken into
consideration, the calculation is performed in the same way as for a single crystal. Thus,
the constant 1/sin20 also applies. The intensity equation for the X-rays that scatter in a

conical pattern is given below:

J(Gu) = CN myy { (1+ cos’26) / (2sin6)} |Fual® (C-8)

However, the X-rays that are actually measured are part of the X-rays scattered in a
conical pattern. This must be taken into consideration. If the distance from the sample is
R, the intensity is Y2nR sin20. To focus just on the factor dependent on scattering angle 0,
we multiply cos 0 in Equation C-7 by 1/sin 20 (for integrated intensity from one crystal

particle) and by 1/ 2nR sin20.

LP=cos0/sin’20=1/2sin0sin2 6

This is the Lorentz factor. The integrated intensity obtained from the measurement

of part of the Debye-Scherrer ring using a powder sample can be expressed as follows:

J(Gu) = CNmyy { (1+ cos’26) / (sin@sin26)} |Fra|>  (C-9)

(1+cos’26)/(sinb sin20) in this equation is the LP factor for the powder sample.

Using white X-rays and analyzing the energy of scattered radiation, we can
measure the integrated intensity of diffracted X-rays. This is equivalent to the Laue
method or energy dispersion method for X-rays and the TOF method for neutrons. In
this case, equation (C-1) is the integration of dAdA. Converting dA to d0 gives dA = A cotO

d0. Thus, the Jacobian differs from that in the integration of dt. The Lorentz factor also
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becomes different. The result is 4%/ 2 sin’0 for a single crystal and A%/ 2 sin’0 for powder.
Even if the scattering angle is kept constant during measurement, the integrated
intensity varies in proportion to 4*. We must also keep in mind that the change due to

the scattering angle differs from that in normal cases.

C4 Absorption factor

Discussions up to this point have disregarded the effects of X-ray absorption by crystals.
When scattering is caused by small crystals and the amount of X-ray absorption is
negligible, we can use Equation C-4 to calculate diffraction intensity. Even if the X-ray
scattering power of a material is small, however, X-rays can be absorbed to a significant
degree, and absorption needs to be taken into account. The intensity of X-rays is
reduced by exp{-ut} when they pass through a crystal with thickness t. As previously

noted, uis called the linear absorption coefficient.

Fig. C-3 Relationship between X-ray penetrating depth and absorption

When X-rays are irradiated onto a crystal and leave the crystal as diffracted X-rays,
they are subject to absorption exp{-u(ti+t2)} along each path, as shown in Fig. C-3. X-rays

travel along various paths. Since they are absorbed in all paths, we calculate the
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average.

AW = (1)l exp(-p) dv - (C-10)
A(y) is called the absorption factor. When X-rays are absorbed, the effective volume
V pertaining to scattering is multiplied by A(g). Thus, the equation for integrated
intensity for single crystals and powder samples can be written as follows:

For single crystals:

J(Guw) = C.V. A1) Lp(S) | FGu)”  (C-11)

For powder samples:

JGu) = CNmyg A() Lp(P) |Fyal”  (C-117)
Here, Lp(S) and Lp(P) are the Lorentz polarization factors for single crystals and
powder samples, respectively. Note that they are not the same.
In the easiest-to-handle case, X-rays are irradiated onto a flat-plate-shaped sample
at the angle 6 and diffracted at the angle &. As shown in Fig. C-4, the following
equation is based on P, the power of the reflection in the direction at angle & from the

layer Xz- Xz" with thickness dz, at depth z, and parallel to surface Xo -Xo".

A E

e [
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Fig. C-4 Absorption of X-rays reflected by layer X, X, in sample in asymmetrical
direction relative to surface. Absorption correction for flat-plate-shaped sample

The intensity that reaches point E, indicated as dI;, is given as follows:
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dl , =1yP exp{-u(BC)} (dz/sin6;) exp{-u(Cb)} (C-12)
If we substitute for (BC) =z / sin @, (CD) =z / sin €: and integrate depth z infinitely

from 0, the scattering intensity I+ at point E is given by the following equation:

o0 o0

1= [dr. j —{(1/sin 6, )+(1/sin 6, )z fz (C-13)

z=0

~sing |

Integration yields the following:

R 1 1
I, =\dl, =—I,P C-14
' l. u " 1+sind, /siné, (19

For semi-infinite samples, scattering intensity can be solved analytically. In this
equation, the absorption factor A(w) is equivalent to I: / IoP. We obtain the following

equation:

A(w) = sin6/ (sin6 +sinb)-u  (C-15)
In the case of 01 = 0: (called the symmetric reflection condition), the absorption

factor is quite simple, as shown below:

A(w =1/2u  (C-16)

That is, for the symmetric reflection condition, the absorption factor is consistent
without being dependent on the incident angle 0. It is %2u of the volume of irradiated
X-rays. For crystals of more complex shapes, it is difficult to calculate Equation C-5 for
each Bragg reflection. In recent years, ray tracing has been used for numeric
calculations.

In the case of a plate-shaped sample, if the incident angle and emerging angle are
the same, A(u) is given by Y1, whether the sample is a single crystal or powder, when
absorption is taken into consideration. However, in the case of powder samples, u

changes, depending on how the sample is packed. We cannot use the absorption
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coefficient for single crystals. If s large, it is incorporated into proportional constant C,
so this may not pose a problem. If ux is small, the value changes according to the

thickness of the sample, and corrections are needed.

C5 Extinction effect

Our previous explanations were based on the following assumption: when X-rays are
irradiated onto crystallites and the Bragg condition is met, the intensity of diffracted
X-rays is proportional to the square of the structure factor | Fu|. But since X-rays are
absorbed in the process, intensity decreases only according to the absorption factor. This
scattering theory assumes that scattering occurs only once in a sample and is equivalent
to the primary Born approximation. In reality, we cannot ignore the possibility that
X-rays diffracted within the crystal sample will encounter other planes that satisfy the
Bragg condition and will be diffracted a second or third time before reaching the
detector, a phenomenon known as multiple scattering. When multiple scattering occurs,
the diffracted X-rays usually attenuate in intensity. This is called the extinction effect.

Two types of extinction can occur with X-ray diffraction in a single crystal: primary
extinction and secondary extinction.
i) Primary extinction effect

Assume an ideal single crystal with no lattice flaws, such as the semi-infinite single
crystal shown in Fig. C-6. Suppose that a parallel X-ray beam that geometrically
satisfies the Bragg condition is irradiated onto a lattice plane parallel to the crystal
surface. As we can imagine by looking at the diagram, for X-rays diffracted under this
condition, a condition that causes a Bragg reflection exists on the lattice plane on the
back side of the crystal. The diffracted X-ray becomes an incident X-ray and returns, but
the returned X-ray undergoes a Bragg reflection again. Some X-rays leave the crystal

surface after repeating this process. If the crystal has high integrity, incident X-rays and
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diffracted X-rays enter a coherent state inside the crystal; therefore, the profile of
emerging X-rays differs completely from what we would expect from single scattering.
The scattering intensity equals the total reflection condition and is always 1. The range
(full width at half maximum) in which this condition is met becomes the width
proportional to the absolute value of crystal structure factor. Thus, the integrated
intensity becomes 1 x |Fnul, which differs from the quantity proportional to |Fnul? we
would expect based on single scattering theory. If X-rays are irradiated onto the crystal
plane discussed here and diffracted from that plane, that crystal arrangement is called
the Bragg case.
MISSING FIGURE C6a/Céb

Fig. C-6b shows an arrangement in which the crystal has a finite thickness of t and
X-rays irradiated onto the surface emerge from the back side as reflected X-rays. This
crystal arrangement is called the Laue case. In this case, if the crystal has high integrity,
multiple scattering occurs; however, if no absorption occurs, the intensity of emerging
X-rays depends on crystal thickness t. If t is small, an approximation based on the single
scattering theory is possible. If t is large, the extinction effect becomes prominent. For
certain values of t, no diffracted X-rays may be observed at all.

This booklet will not attempt a detailed explanation of multiple scattering.
Diffraction theory incorporating multiple scattering into perfect crystals is called
dynamic diffraction theory. In contrast, the single scattering theory we discussed in
this booklet is called the kinematical diffraction theory.

ii) Secondary extinction effect

In the above discussion, the crystallinity of the sample crystals was assumed to be
good. Here, we consider a case in which integrity varies within the crystal. Such a
sample is called a mosaic crystal. X-rays diffracted at one location of a crystal are
diffracted at a second location and registered as diffracted X-rays once again. This may

appear to be identical to the case in i), but the intrinsic difference is that the scattering
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that occurs a second time will lose X-ray coherence. The interactions between incident
X-rays and diffracted X-rays is not a wave function, but an exchange of energy
(intensity). Scattering that undergoes this process is typically limited to large crystal
structure factors or scattering of high scattering power. Additionally, the intensity
obtained is generally weaker than the integrated intensity we would expect based on
kinematical diffraction theory. To distinguish it from the extinction effect in i), this is
called the secondary extinction effect.

How do these extinction effects in single crystals make themselves apparent in the
case of powder X-ray diffraction? This is an important issue. The recommended crystal
particle size in powder crystals is several microns or less. If the crystal grain size is
small, we can approximate both the Laue case and the Bragg case based on kinematical
diffraction theory. Thus, we may conclude that the primary extinction effect need not be
considered at all. However, with powder samples, the probability of declining intensity
due to X-rays being diffracted twice by a crystal particle is not small if the diffracted
X-rays have high intensity. The author believes the secondary extinction effect needs to
be considered. If the intensity of high-intensity diffracted X-rays is found to be lower
than the value calculated according to kinematical diffraction theory, we should exclude
that reflection, rather than attempting to make numeric figures match in our intensity
calculations. The experimenter should perform the analysis in a range in which the
results can be trusted.

The extinction correction theory for primary and secondary extinction effects was

discussed from the early 1970s to 1980s. Listed below are some references.

e T.M. Sabine, R.B. Von Dreele and J.E. Joergensen; Acta Crystallogr., A 4A, 374 (1988)

C6 Correction of preferred orientation

Preferred orientation causes significant fluctuations in integrated intensity and results
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in adverse effects on analysis results. The effects of preferred orientation are especially
marked with X-ray diffraction with flat-plate samples. It is necessary to keep the size of
crystallites to 3 pm or less. This and other precautions are mentioned in this booklet. We
may also refer to the following documents.
e W.A. Dollase: . Appl. Crystallogr., 19, 267 (1986)
e M. Ahtee, M. Nurmela, P. Suortti and M. Jaervinen; |. Appl. Crystallogr., 22, 261
(1982)





