Thin Film XRD Training Notebook

Lab Manager: Dr. Perry Cheung MSE Fee-For-Service Facility Materials Science and Engineering University of California, Riverside

August 21, 2024 (rev. 1.1)

Before you begin...

Complete the required safety training modules on LMS

- □ Laboratory Safety Fundamentals
- Hazardous Waste Management
- **Radiation Safety For Users of Radiation Producing Machines**
- Compressed Gas Safety
- **G** Submit a copy of your Training Transcript to Lab Manager
- □ Review the MSE Thin Film XRD Policies and Regulations
- **Fill out the Thin Film XRD FAU Authorization Form with PI signature**
- □ Receive a user name and temporary password for Faces scheduling
- Arrange a time for Thin Film XRD training with Lab Manager
- **C** Schedule a 2 hour block on Faces for your training
- Receive a SmartLab II password

Thin Film XRD (Rigaku SmartLab II) Operation

- A. XRD Cabinet Overview
- B. Measurement Basics
- C. GUI Basics
- I. Startup
- II. XRD Detector
- III. XRD Optics
- IV. XRD Sample Attachment
- V. RS Viewer
- VI. Utility Activity
- VII. General (PB) or $2\theta/\omega$ Scan
- VIII. Azimuth or Phi (ϕ) Scan
- IX. Reflectivity
- X. Pole Figure
- XI. Rocking Curve
- XII. Reciprocal Space Map (RSM)

- XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi$
- XIV. In-Plane Azimuth or Phi (ϕ) Scan
- XV. In-Plane Pole Figure
- XVI. In-Plane RSM
- XVII. Monochromator Ge(220)x2
- XVIII. Grazing Incidence XRD or GIXRD
- XIX. Clean-up and Shutdown
- XX. Overnight Scan + Shutdown

Troubleshooting

- A. Initial Power Up
- B. Hypix Detector Troubleshooting

A. XRD Cabinet Overview – 1/2

 $\,\circ\,$ This covers the Rigaku SmartLab II XRD Cabinet and its components

(1) Power Key: Power key used to start and stop SmartLab

- (2) Emergency OFF Switch: Press this switch in the event of an emergency to cut off the power supply to the main unit
- (3) Door: Opened to change samples and optical devices
- (4) X-Rays ON Lamp: Lights when X-rays are generated
- (5) Observation Window: Window used to observe the inside of the cabinet

(2)

- (6) Power-on Indicator: Lights when SmartLab is powered ON
- (7) X-RAYS ON Indicator: Lights when X-rays are generated
- (8) Door-Lock Indicator: Lights when the door is locked
- (9) Alarm Indicator: Flashes when an error occurs

A. XRD Cabinet Overview – 2/2

(#)	Section	Description			
1	Theta_s (θ_{s}) arm	Arm for controlling X-ray beam incident angle			
2	X-ray Generator	X-ray generating device			
3	Incident Optics	Optical devices for desired incident X-ray conditions			
4	Theta_d (θ_d)Arm	Arm for controlling the X-ray detector angle			
5	Receiving Optics	Optical devices for desired X-ray receiving conditions			
6	Detector	X-ray detector			
7	Sample	Adjusts the position and orientation of sample			
8	In-Plane Arm (θ_{χ})	Theta_d arm used for In-Plane measurements			

B. Measurement Basics – 1/10

$\,\circ\,$ This summarizes the different Scans and Information obtained

Measurement Technique (Scan)	Informatio	n Obtained	Scan Axis	
Out-of-Plane (1D)	Information on lattice plane \rightarrow Qualitative analysis	2θ/ω (Always 2θ = 2 x ω)		
Thin Film (1D)	Information near sample surface (a $ ightarrow$ Qualitative analysis	pplies only to unoriented samples) s and crystal structure	$2 heta$ (Incident angle, ω , is fixed near the critical angle)	
In-Plane (1D)	Information on lattice planes near a \rightarrow Qualitative analysis	Information on lattice planes near and perpendicular to sample surface $ ightarrow$ Qualitative analysis and crystal structure		
Pole Figure (2D)	Information on distribution \rightarrow Orientat	$\chi(\alpha), \phi(\beta)$ (2θ or sum of 2θ and 2θ _χ is fixed at the diffraction angle)		
Preferred orientation and crystallinity measurement (1D)	Information on degree of preferred orientation or crystallinity \rightarrow Orientation and crystallinity analysis		ω, χ, or φ	
Rocking Curve (1D)	Information on film structure and cry \rightarrow Crystallinity, film thickn	Information on film structure and crystallinity of epitaxial or single crystal \rightarrow Crystallinity, film thickness, and composition ratio		
Reciprocal Space Map or RSM (2D)	 Information on d-value of 3-Dimensional components of preferred orientation, crystal orientation, and degree of preferred orientation → Qualitative analysis, orientation analysis, and crystallinity analysis 	Information on film structure and crystallinity of epitaxial or single crystal → Crystallinity analysis and epitaxial analysis	2θ/ω, ω (χ or φ) 2θ _χ /φ, φ (χ or φ)	
Reflectivity (1D)	ightarrow Film thickness, density, and surfa	ace or interface roughness by fitting	20/0	

B. Measurement Basics – 2/10

$\,\circ\,$ This covers the Goniometer Optics and Measurement Axes

B. Measurement Basics – 3/10

 $\,\circ\,$ This covers the Out-of-Plane (1D) or General (PB) XRD or 20/ $\!\omega$ Measurement

Movement:

• 2θ is driving arm; 2θ range = -10 to 158°

• ω is slave arm; $\omega = \frac{1}{2}(2\theta)$

Pros:

- Used for Qualitative analysis such as:
- Determining presence or absence of a preferred orientation
- Interplanar spacings of lattice planes parallel to surface
- Lattice constants corresponding to these interplanar spacings
- Crystallinity of a crystal lattice parallel to the surface Cons:
- Cannot observe lattice planes perpendicular to surface
- Cannot provide information on presence or absence of the in-plane orientation
- Cannot distinguish between a fiber-oriented and a single crystal

B. Measurement Basics – 4/10

 $\,\circ\,$ This covers the Thin Film (1D) or Grazing Incidence XRD or GIXRD Measurement

Movement:

- 2θ is driving arm; 2θ range = -15 to 120°
- ω is set near a small critical angle usually between 0.1 to 1° Pros:
- Avoids scattering from the substrate
- Used for Qualitative analysis such as:
- For unoriented (or weakly oriented) polycrystal samples
- Lattice constants
- Crystallinity of a sample
- Depth dependence of above physical quantities
 Cons:
- Cannot be used to analyze strongly oriented polycrystal sample or single crystal

B. Measurement Basics – 5/10

 $\circ~$ This covers the In-Plane (1D) XRD or $2\theta_{\chi}/\phi$ Measurement

Movement:

- $2\theta_{\gamma}$ is driving arm; $2\theta_{\gamma}$ range = -3 to 89°
- ω is set near a small critical angle usually between 0.1 to 1°
- ϕ is slave arm; $\phi = \frac{1}{2} (2\theta_{\chi})$

Pros:

- Similar to GIXRD with respect to depth of analysis
- Used for Qualitative analysis such as:
- Investigating presence or absence of the preferred orientation
- Interplanar spacings of lattice planes perpendicular to the surface
- Lattice constants corresponding to these interplanar spacings
- Crystallinity of the crystal lattice perpendicular to the surface
- Presence or absence of in-plane orientation
- Distinguish between fiber-oriented sample and single crystal or confirm presence or absence of twinning

Cons:

- Cannot observe lattice planes parallel to surface
- Cannot provide information on presence or absence of the outof-plane orientation

B. Measurement Basics – 6/10

 $\,\circ\,$ This covers the Pole Figure (2D) Measurement

Movement:

- 2θ is kept constant; $\omega = \frac{1}{2}(2\theta)$
- α is stepped; α range = -5 to 95°
- β is continuously rotated; β range = -720 to 720°

Pros:

- Measures diffraction intensity distributions by rotating the sample in all directions while keeping the diffraction angle constant
- Direction at high diffraction intensity is observed corresponds to the preferred direction of the pole figure axes – indicating that crystallites with the measurement planes oriented in that direction are dominant

Notes:

- Remember that α = 90° χ in SmartLab II
- Choose α step values carefully!
- α step controls the resolution (and max intensity)
- Speed of β scan controls the sign-to-noise ratio of scans

B. Measurement Basics – 7/10

 $\circ~$ This covers the Preferred Orientation (1D) or Azimuth or ϕ Scan Measurement

Movement:

- 2θ is kept constant; $\omega = \frac{1}{2}(2\theta)$
- ϕ is continuously rotated; ϕ range = -720 to 720° Pros:
- Same underlying principles for pole figure measurement
- Measures a cross-section of a pole figure measurement
- Measures the spread (width) of diffraction intensity distribution
- Related to degree of preferred orientation (vs randomly orientated sample)
- Related to mosaicity (vs perfect single crystal)
- Quicker to perform than full pole figure measurement Notes:
- Remember to optimize χ value first!
- Speed of $\boldsymbol{\phi}$ scan controls the sign-to-noise ratio of scans

B. Measurement Basics – 8/10

$\circ\,$ This covers the Rocking Curve (1D) Measurement

Movement:

- ω is driving arm; ω (relative) range = -5° to +5°
- 2θ is kept constant; $2\theta = 2\omega$

Pros:

- Measures diffraction intensity distributions along a reciprocal lattice vector
- Planes no longer parallel with sample surface are brought onto the Bragg plane
- Measures changes in interplanar spacing
- Generally used to evaluate the thickness or mixed crystal ratio of an epitaxial film on a sample
- Width of rocking curve depends upon mosaic spread of the grains, density of dislocations, and substrate curvature
- FWHM is recorded and indication of quality of intended epitaxial growth or preferential orientation

Notes:

• Do not mix up width of rocking curves with the widths on the peaks in the $2\theta/\omega$ scans

B. Measurement Basics – 9/10

 $\,\circ\,$ This covers the Reciprocal Space Mapping or RSM (2D) Measurement

Movement:

- $2\theta/\omega$ scan is one mapped direction
- ω scan is second mapped direction

Pros:

- Measures diffraction intensity distributions and plots result in reciprocal space
- Central coordinates, shapes, and positional relationships of the reciprocal lattice points (film and substrate) appearing in 2D map provides a wide range of info on crystal structure

Notes:

- Each ω step $\rightarrow 2\theta/\omega$ scan is performed (q_x)
- Each $2\theta/\omega$ step $\rightarrow \omega$ scan (Rocking Curve) is performed (q_v)

B. Measurement Basics – 10/10

$\,\circ\,$ This covers the Reflectivity (1D) Measurement

Movement:

- 2θ is driving arm; 2θ range = 0 to 10°
- ω is slave arm; $\omega = \frac{1}{2}(2\theta)$

Pros:

- Can be used for crystalline or amorphous samples
- Evaluates thickness, density, and surface or interface roughness of thin-film materials
- Evaluates structure of a multilayer or single layer film
- Measures samples nondestructively

Cons:

- Requires surface and interfaces are flat
- May require monochromator to yield higher resolution for thicker films

C. GUI Basics -1/3

• These slides will teach you GUI Basics

Instrument

C. GUI Basics – 2/3

- Flow Controls used to control your Measurement Flow (or Measurement Program)
 - *Wizard* will help you selected the recommend packages for desired measurement/analysis

- New Flow remove existing Flow and create a New Flow package
- **Open Flow** open existing **Flow** that you have saved in the **File System**
- Save Flow saves your edited Flow into the Files System
- Save Flow As saves your edited Flow as a new file into the Files System DB Cre Run Load Rep Flow -Data • Browser Run Flow E Run Flow Ctrl+F5 • **Run Flow** – runs your entire **Flow** from top to bottom Run Selected Part Ctrl+F6 *Run Selected Part* – only runs the *Selected Part* ٠ Run from Selected Part Ctrl+F7
 - Run from Selected Part will run your entire runs your flow from top to bottom starting from Selected Part (useful for Shutdown)

C. GUI Basics -3/4

- Instrument Controls useful controls for the Instrument
 - Light Turns the Light ON and OFF inside Cabinet

- Door Lock Toggles the Door Locks ON and OFF
- Move to Home Position Moves the Goniometer axes to the starting Home Position useful for exchanging optics

• Tools Control – opens Reciprocal Space (RS) Viewer – see V. RS Viewer

Position

Light

Light

I. Startup - 1/2

- $\circ\,$ This sequence is used for Initial Startup sequence
- 1. First *Double-click* on *SmartLab Studio II* software icon
- 2. Enter your *Login* and *Password*
 - Login: training Password: training

- 4. If *Status* is *"XRD Measurement | Ready (Not Connected)"*, → XRD Measurement Not ready (Connected) you will need to follow *Steps 5-6* to restart the *Server*
- 5. Access lower right *Hidden Icons* tray, ^ 다 🖓

then find the *ICServerTaskTray* icon

6. If icon is not *Green*, then *Right-click* and click on *Restart* to enable, then proceed to *Step 7*

14. The *Operational Level* should now be set to 40 kV and 44 mA (1.8 kW) for normal operation

II. XRD Detector -1/1

$\,\circ\,$ This covers the Detector

Detector	Orientation (Applications)	Window Protector	
HyPix-3000 (2D Detector)	Horizontal (Default)	Vertical (Micro Area)	Window	Window
Prevention Prevention	<image/>	<image/>		Protector must be inserted to protect Detector when swapping out Receiving Optics! \$\$\$\$\$\$
тралициациациациациациациациациациациациациа	Mark indicates position i.e. Detector Pla	n of detector adapter and ne of 300 mm \Rightarrow Detector	is +50 mm from the det or Adaptor Position of 3	tection plane. 50 mm

III. XRD Optics -1/6

\circ This covers the Incident Optics Unit #1

Incident Optics Unit #1	Incident Optics			
CBO – Cross Beam Optics	Parallel beam method (PB)	Para-focusing method (BB)	Micro Area (MA) 0.5	Micro Area (MA) 0.3
	OB LO	OB		

III. XRD Optics – 2/6

• This covers the Incident Optics Unit #2

Incident Optics Unit #	Incident Para	allel Slits (Aperture) +	- IPS Adaptor	
Incident Parallel Slit (IPS) + Adaptor	Ge(220) 2-bounce monochromator	Soller Slit (Open)	Soller Slit (5.0deg)	In-plane PSC (0.5deg)
	Image: Solier Site Open Image: Solier Site Open			

III. XRD Optics – 3/6

$\,\circ\,$ This covers the Incident Slit

	Length-Limiting Slit (Aperture)				
Incident Slit	10 mm	5 mm	2 mm	0.5 mm	0.2 mm
<image/> <text></text>					

III. XRD Optics -4/6

\circ This covers the Receiving Slit

Receiving Slit		kβ Filters (Thickness)			
Receiving Slit Box	Insertion Diagram	CuK β 1D (23 μm)	CuK β 15 μm (15 μm)	9 kW filter	
Insert Card hugging RIGHT edge		CuK ß 1D		9kW filter	

III. XRD Optics – 5/6

 $\,\circ\,$ This covers the Receiving Optics Unit #1

Receiving Optics Unit #1	Parallel Slits Analyzers (A	Aperture) + ROD Adaptor
Parallel Slit Analyzer (PSA) + Adaptor	PSA (Open)	PSA (0.5deg)
 PSA open PSA open PSA daptor PSB adaptor PSB ad	PSA open	Image: Sector

III. XRD Optics – 6/6

• This covers the Receiving Optics Unit #2

Receiving Optics Unit #2	Receiving Parallel Slits (A	Aperture) + RPS Adaptor
Receiving Parallel Slit (RPS) + Adaptor	Soller Slit (5.0deg)	In-Plane PSA (0.5deg)
PSA open PSA open PSA open PSA 0.5deg Company PSA 0.5deg PSA 0.5deg PSA 0.5deg PSA 0.5deg PSA 0.5deg PSA 0.5deg PSA 0.5deg PSA 0.5deg	soller 5 bides	Tresse Base Base Base
	RPS adaptor	RPS adaptor

IV. XRD Sample Attachment – 1/2

$\circ~$ This covers the Sample Attachment Heads

Attachment Platform	A	ttachment Heads (Applications)		
χφZ Attachment Platform	Standard (Alignment, Bulk Sample)	RxRy (Reflectivity, RSM, In-Plane)	XY-20 mm (Micro-area)	
		Carefully align Attachmen Platform via the black	t Head to the Attachment triangle ▼ indicator.	
		DO NOT BEND OR DAMAG Secure in place by closing t	SE THE CONNECTOR PINS! The Clasps and Front Latch .	

IV. XRD Sample Attachment – 2/2

• This covers the Sample Plates (Note: Does not have recognition chips – you must remove even if not instructed!)

Sample Plate	Picture	Installation	Removal
Height Reference Sample			
Sample Spacer			
Wafer Sample Plate			

V. RS Viewer - 1/2

- $\circ\,$ These slides will teach you about the Reciprocal Space (RS) Viewer
- 1. Click on the **RS Viewer** icon at the top of the **XRD Measurement** plugin
- 2. Click on the **?** icon to open up the *RSViewer_UserManual_en.pdf* to review the tutorial
- 3. Add and edit layers to build up your substrate + films
- 4. Edit the *Samples Axes* (if known) to correlate actual sample to reciprocal lattice (e.g. Si wafer) →

5. Set *Geometry* for your scans: *Out of plane* or *In-Plane*

Measurement	t		Measuremen	t	
Geometry:	Out of plane (ω step)		Geometry:	In-plane	\checkmark
X-ray target:	Cu-Kα ₁	\checkmark	X-ray target:	Cu-Kα ₁	\sim

6. Enter in desired reflection plane in *Origin* or select the *Shape Icon*

Reflection information				?
Layer: Si(Sub)				
Origin: 0 0 4 Min. F (re	el.) to show, %: 0	Highlighted: 0 0 4	Select	Clear
20B:69.13 F :62.50 F ² :3906.49 Incident ar	gle: 34.565 Reflected angle: 34.565			

(Jr

RS

Viewer

V. RS Viewer – 2/2

V. RS Viewer - 3/4

o These slides will teach you how to load your sample information if not in the database already

		Accessing COD Data		Search
12.	Click on the <i>Search</i>	Browse Search Search by structural formula JSME search		(For more information on search see the <u>hints and tips</u>) Search by COD ID: Search
13.	.3. Search for your desired sample using your desired method (e.g. Text, Journal, Chemical Formula, Elements, etc)			OpenBabel FastSearch: Enter SMILES: Search
14.	Identify the desired sample inform	nation you want to in	nport	Note: substructure search by SMILES is currently available in a subset of COD containing 225655 structures. text (1 or 2 words) iournal

COD ID 🔺	Links	Formula 🔺	Space group 🛦	Cell parameters	Cell volume 🛦	Bibliography
<u>1001452</u>		Ba2 Cu3 O7 Y	<u>P m m m</u>	3.8128; 3.8806; 11.6303 90; 90; 90	172.1	Capponi, J J; Chaillout, C; Hewat, A W; Lejay, P; Marezio, M; Nguyen, N; Raveau, B; Soubeyroux, J L; Tholence, J L; Tournier, R Structure of the 100 K Superconductor Ba~2~ Y Cu~3~ O~7~ between (5- 300)K by Neutron Powder Diffraction <u>Europhysics Letters</u> , 1987 , <u>3</u> , 1301-1307

15. Click on the *CIF* link and download the file into your *CIF Folder*

V. RS Viewer -4/4

17. Click on the *Import from File* tab and select *CIF*

- 18. Select the *CIF* file that you had downloaded
- 19. The sample information should now be available for you in the *Material* selection in *RS Viewer*

Sample										1
Sample name:			Import Sample	Expor	t Sample	Send S	Sample			
 Layer operations Group operations Duplicate Layer Up Down Remove All Layers Edit Anchors 										
Shape	Shape Layer Mat		erial		Show reflection		Show reflection indices		Show forbidden reflection	
•	L1 [🚦 Barium yttrium copp	Barium yttrium copper oxide (2/1/3/7)							1
•	Sub [Si					\checkmark			

VI. Utility Activity -1/2

- This sequence will perform a Mirror Alignment and HyPix Adjustment after using the Monochromator Ge(220)x2
- Select the *Mirror Alignment* activity under *XRD Measurement > Part Activities* 1.

Run

2. Drag the *Mirror Alignment* activity into the *Flow Editor* in *Sequence*

Click on *Mirror Alignment* activity 4. and select **CBO**, and click **OK**

3.

📋 Sequence \bigtriangledown Drop activities here Drag the *HyPix Adjustment* activity in *Sequence* ? × Mirror Alignment 👛 Sequence ∇ Alignment conditions 💥 Mirror Alignment Alignment mirror: CBO 🚊 Sequence OK Cancel \bigtriangledown 🗙 Mirror Alignment ? × HyPix Adjustment 💥 HyPix Adjustment Adjustment conditions Temperature correction ✓ Create mask file Center position and distance between sample and detector adjustment Run recommended sequence O Customize conditions Customize... Run OK Cancel

XRR × HRXRD × Powde

? # X

Q

? # ×

?

?

?

\$

XRD Measurement X

Quick Measurement (BB)

X Analyzer Alignment X HyPix Adjustment X HyPix Calibration

X Mirror Alignment

Activities Part Activities

Utility Activity

Flow Editor

- 5. Click on *HyPix Adjustment* activity and confirm only the first 2 options are checked, and click **OK**
 - Temperature correction a)
 - b) Create mask file

VI. Utility Activity – 2/2

- 6. Click on *Run Flow* to perform Mirror Alignment and HyPix Adjustment automatically
- A Smart Message will appear indicating all the optics and attachments that need to be removed (indicated in RED) and those that need to be installed (indicated in GREEN)
- 8. Proceed to perform each step in sequence and click **OK** when completed =

Note: Your Smart Message may differ from example shown

16, 1202702568 9802 280

9. Mirror Alignment will be performed first, followed by HyPix Adjustment

VII. General (PB) or $2\theta/\omega$ Scan – 2/7

- 7. Confirm *Use default optics* is selected under *Optical settings*
- 8. Confirm *Full* is selected under *Alignment conditions*
- 9. Confirm *User settings* is selected, then click *Run*

11.

Optical settings		
Incident monochro	mator: None	
Receiving optics:	Slit	
Run alignment f	or vertical transmission geometry	
Use default opti	cs O Customize optics Customize	
Alignment conditio	ns)nly receiving optics)	
Alignment conditio Full Quick (C Registration destina	ns Only receiving optics) ation	
Alignment conditio Full Quick (C Registration destin: Optics attribute:	ns Only receiving optics) ation	
Alignment conditio Full Quick (Registration destination Optics attribute: User settings	ns Only receiving optics) ation PB	New
Alignment conditio Full Quick (Registration destine Optics attribute: User settings System settings	ns Only receiving optics) ation PB	New

10. A *Smart Message* may appear indicating all the optics and attachments that need to be *removed* (indicated in **RED**) and those that need to be *installed* (indicated in **GREEN**)

Click **OK** when completed ______

	Smart Message
	Replace Soller slit open with Soller slit 5.0° in IPS adaptor.
	Replace length-limiting slit 5 mm with length-limiting slit 10 mm in integrated incident slit box.
	Remove the RxRy attachment head.
	Install standard attachment head in xoZ attachment platform.
	Install Height reference sample plate in standard attachment head.
t	Insert center slit in Height reference sample plate.
	Attach the detector plane of HyPix-3000 (horizontal) to 300 mm. (Adjust the mark of the detector adaptor to 350 mm)
	Hide figures

VII. General (PB) or $2\theta/\omega$ Scan – 3/7

- 12. System will perform **Optics Alignment** on various axes (Average time \approx 4 minutes)
- 13. Wait for the *Flow sequence completed* prompt to continue by clicking *OK*

- 14. Left-click on *Sample Alignment (Thin Film)* to set *Sample Info*
- 15. Input your *Sample Info* per the dimensions —

• For training with Silicon: Thickness = 0.5 mm; Width & Height = 5 mm

VII. General (PB) or $2\theta/\omega$ Scan – 4/7

- 16. Confirm the following are checked:
 - Direct beam half cut alignment
 - Surface normal alignment
 - Put a sample when the sample alignment starts

17. Click *Run* (Average time \approx 6 minutes) _____

	Sample Alignment	(Thin Film)	?		
Sample information					
Thickness, mm: 0.5	Width, mm: 5.0	Height, mm: 5.0	(j)		
Alignment conditions					
Attachment and sample plate:	RxRy attachment head +	4-inch wafer sample plate			
Direct beam half cut alignn	nent 🗹 Surface normal ali	gnment			
	Alignment criteria:	Standard			
	Surface density:	High (> 4.0 g/cm3)	[
✓ Put a sample when the sample alignment starts					
Run recommended sequence Customize conditions Customize					
			-		

- 18. If *Sample Alignment (Thin Film)* fails, try changing surface density
- For training with Silicon: Surface density should be set to High
- 19. Wait for the *Flow sequence completed* prompt to continue by clicking *OK*

General (PB) or 20 ft-click on <i>General Measurement</i> to set sca	General (PB)		
			General Measurement
	General Measurement		() ×
Manual exchange slit conditions	Kβ filter condition	Detector conditions	•
Measurement conditions			
Attachment base: χφZ attachment	Attachment head: Attachment without movable axis	\checkmark	
Exec. Scan Axis Range Start, Stop, Stop,	p, °Speed, °/minSlit, mmSlit #1, mn	Receiving Attenuator Comm	nent Options
1 🗹 2θ/ω 🔽 Absolute 🗹 68.0000 71.0000 0.010	0 4.000 1.000 1.000	1.100 🗸 Open 🖂	Set ^
2 0/28 Absolute 3.0000 80.0000 0.010	0 4.000 1.000 1.000	1.100 💙 Open	Set

Select $2\theta/\omega$ for the *Scan Axis* 21.

20.

- 22. Adjust the following parameters based on your desired scan conditions
 - **Start**, °: Enter starting scan position for 2θ angle (e.g. 68°)
 - **Stop**, °: Enter ending scan position for 2θ angle (e.g. 71°)
 - Step, °: Enter scan step size for 2θ angle (e.g. 0.01°) controls resolution or spacing of data points
 - **Speed**, °/min: Enter the scan speed (e.g. 4°/min) controls the signal/noise (S/N) ratio
- The following can be increased if you wish to increase the x-ray exposure to your sample in the width dimension 23.
 - Incident Slit, mm
 - - Receiving Slit #1, mm \succ Default values are automatically chosen based on sample dimensions
 - Receiving Slit #2, mm

VII. General (PB) or $2\theta/\omega$ Scan – 6/7

31. If the (111) peak is not observed \rightarrow sample orientation is mismatched with **RS Viewer** via the φ position

VIII. Azimuth or ϕ Scan – 1/3

- $\circ~$ This sequence will perform an Azimuth or ϕ Scan
- Left-click on *General Measurement* 1.

2.

3.

4.

5.

Manual exchange slit conditions	 Kβ filter condition 	•	Detector conditions		,
Measurement conditions					
Attachment base: χφZ attachment	Attachment head: Attachmen	t without movable axis	~		
Exec. Scan Axis Range Start, * Stop, *	Step, ° _ Speed, °/min _	Incident Receiving Slit, mm = Slit #1, mn	Receiving Slit #2, mm = Attenuator	Comment Options	
1 2θ/ω Absolute 27.0000 30.0000 0.	0100 4.000	1.000 1.000		Set ^	
2 🔽 φ 💙 Absolute 💙 0.000 360.000 0.	100 120.00	1.000 1.000	1.100 🗸 Open	✓ Set	
3 A/28 Absolute 3 0000 80 0000 0	0100 4.000	1 000 1 000	1 100 V. Onen	V Set	
lect φ for the <i>Scan Axis</i> for #2	Ts 2θ/ω Zs 2θ	Zr ω Z θ/2θ Ry	Rx φ		
t Start = 0° and Stop = 360° e p = 0.1° and Speed = 120°/min	st	.) ≠ 90°	≠	180° ≠ 270	0
ck Run (no need to save scan)	- - 0		· · · · · · · · · · · ·		
ur an a stra will look similar to this	0	50 100	150 200 س °	1 250 300	

360°

VIII. Azimuth or ϕ Scan – 2/3

- 6. Zoom-in one of the peaks...
- 7. Left-click on *General Measurement* again
- 8. Click on *Set...* under *Options*
- 9. Set φ to the value of your peak position, and click **OK** _____i

Start, °

25.0000

Stop,

31.0000

Scan Axis

20/ω

- 10. Set *Scan Axes* back to $2\theta/\omega$ and input *Start* and *Stop* values back to 27° and 30°
- 11. Click *Run* again —

VIII. Azimuth or ϕ Scan – 3/3

12. You should see a similar spectra showing the (111) peak at around $2\theta_b = 28.4^\circ$ as suggested by the *RS Viewer*

- 13. Some measurements may perform "*Pre-Measurements*" that will identify and set the goniometer settings (e.g. 2θ , ω , ϕ , θ_{χ} , etc...) for your scans, but may not always succeed or be available
- 14. It is still up to the user to be comfortable controlling and moving the **Axes** and setting the **Origin** when appropriate

IX. Reflectivity -1/4

- This sequence will perform a Reflectivity Measurement
- Select the *Reflectivity* package under *XRD Measurement > Package Activities* 1.
- 2. Drag the *Reflectivity* package into the *Flow Editor* in *Sequence*
- 3. If **Optics Alignment (PB)** and **Sample Alignment (Thin Film)** were previously performed, then skip to Step 11 **Optics Alignment (PB)**

Optical settings

Receiving optics:

Alignment conditions

Registration destination

PB

Optics attribute:

User settings

Run

System settings Registration date:

Incident monochromator: None

Slit

- 4. Left-click on *Optics Alignment (PB)*
- 5. Confirm the following are selected:
 - Optical settings \rightarrow Use default optics
 - Alignment conditions → Full
 - Registration destination \rightarrow User settings
- 6. Click **Run** = and then **OK** when completed

 X 13. 14.	 IX. Reflectivity - 3/4 13. Input your desired <i>File name</i> and <i>File location</i> here 14. Select <i>Customize conditions</i> if you wish 					Run recom Save measure Hie name: Sample name: Memo: Calculated scan of	mended seque ured data	ence 🔾 Custom						
15.	You may include different scan					<i>c</i>					UK		Can	×
	<i>Step</i> and <i>Speed</i> for different 2 θ ranges ———	Customize – Reflectivity Measurement												
		Requested scan duration												
		Requested scan duration, min: 51 🗘 Return to Default Value												
		Manual exchange slit condition:												
		Incident	Soller slit: So	ller slit 5.0°		✓ Receivi	ing optics:	Slit		\sim				
		Length-limiting slit: 10 mm Receiving Sol e				ing Sol er slit:	er slit: Soller slit 5.0° Read Current Optics							
		Scan co	nditions											
12	Click OK then click Bun	Scan une	de OD(contin											
15.		Exec.	Scan Axis	Range	Start, °	Stop, °	Step, °	Speed, °/min	Incident Slit, mm	Receiving Slit #1, mm	Receiving S #2, mm	Slit	Attenua	tor
		\checkmark	2θ/ω	Absolute	0.0000	5.0000	0.0100	12.000	0.050	0.250	0.300	\sim	Auto	\sim
		\checkmark	2θ/ω	Absolute	5.0000	10.0000	0.0100	6.000	0.050	0.250	0.300	\sim	Auto	\sim
			2θ/ω	Absolute	0.0000	10.0000	0.0100	0.667	0.050	0.250	0.300	\sim	Auto	\sim
			2θ/ω	Absolute	0.0000	10.0000	0.0100	0.667	0.050	0.250	0.300		Auto	
			20/0	Absolute	0.0000	10.0000	0.0100	0.007	0.050	0.250	0.300		Auto	
											Calculated	scan d	uration: 1	min 15s
									Set f	Recommended Va		ж	Ca	ncel

Package Activities Q X. Pole Figure -1/5▲ General 🖤 General (BB) General (PB) Reflection SAXS This sequence will perform a Pole Figure using Parallel Beam optics Micro Area Ο Pole Figure Residual Stress Select the *Pole Figure* package under *XRD Measurement > Package Activities* 1. Flow Editor ? # X A 24 2. Drag the *Pole Figure* package into the *Flow Editor* in *Sequence* Sequence Drop activities here 3. Right-click on *Sample Alignment (Powder, Bulk)* and select "*Delete*" 📮 Pole Figure XRD Measurement × XRR × HRXRD Powd × \bigtriangledown Activities ? # × -In Optics Alignment (BB) ? Find Sample Alignment (Thin Film) under Part Activities = 4. 9 Q Part Activities Sample Alignment (Powder, Bulk) ? Alignment Activity + Sample Alignment (Powder, Bulk) A Pole Figure Measurement 0? Sample Alignment (Thin Film) 5. Drag Sample Alignment (Thin Film) under the Optics Alignment (PB) : 👛 Pole Figure ? Optics Alignment (BB) 6. If **Optics Alignment (PB)** and **Sample Alignment (Thin Film)** were previously A Pole Figure Measurement 0 performed, then skip to Step 14 🚊 Pole Figure ? 7. Optics Alignment (BB) Left-click on **Optics Alignment (PB)** ? Sample Alignment (Thin Film) A Pole Figure Measurement 0?

X. Pole Figure -2/5

- 8. Confirm the following are selected:
 - Optical settings \rightarrow Use default optics
 - Alignment conditions → Full
 - Registration destination \rightarrow User settings
- 9. Click *Run* and then *OK* when completed
- 10. Left-click on Sample Alignment (Thin Film)
- 11. Input your *Sample Info* per the dimensions

- 12. Confirm the following are checked:
 - Direct beam half cut alignment
 - Surface normal alignment
 - Put a sample when the sample alignment starts

		C	Optics Alignment (PB)	? ×
)		Optical settings		
		Incident monochromator:	None	
IF	il l	Receiving optics:	Slit	
		Run alignment for vert	ical transmission geometry	
		Use default optics	Customize optics Customize	
	XRD Measurement ×	Alignment conditions		
ngs	Flow sequence completed.	Full Quick (Only red	ceiving optics)	
		Registration destination		
	ОК	Optics attribute: PB		
		User settings		New
		System settings		
		Registration date:		
п ғит) =		Run	OK	Cancel
			🃮 Pole Figure	0
nciona			Ontics Alignment (BB)	0
=				(1)
			►	?
Г			\bigtriangledown	
	Sample Alignment (Thin Lilm)		A Pole Figure Measurement	?
	Sample information	₩	\bigtriangledown	
	Thickness, mm: 0.5 Width, mm: 5.0 Height, mm 5.0	D		
	Alignment conditions			
	Attachment and sample plate: RxRy attachment head + 4-inch wafer sample pla	te 🗸		
	✓ Direct beam half cut alignment ✓ Surface normal alignment			
	Alignment criteria: Standard	~		
	Surface density: High (> 4.0 g/cm3)	~		
ont starts	✓ Put a sample when the sample alignment starts			

17. Choose to *Run recommended sequence* or *Customize conditions*

X. Pole Figure -4/5

- 18. Depending on your *Step* chosen, be aware that it may not be sufficient so choose the following carefully for α scan axes!
 - Start
 - Stop
 - Step
 - Speed

(Note: Will the peaks appear for α if arbitrarily chosen?)

2θ angle, ° (Tran	smission):	28.4664	20 angle, ° (Ref	lection): 28.4	664 γ	axis oscillation:	Not run	\sim		
Geometry	Step Axis	Scan Mode	Range	Start, °	Stop, °	Step, °	Incident Slit	t Receiving Slit #1, mr	Receiving n Slit #2, mm	Attenuator
		0D(step)	Absolute	0	15	5	0.1 mm		9.900 🗸	
Reflection	α	0D(step)	Absolute	15.264	55.264	5.000	1/6°	✓ 10.000	9.900 🗸	Open
Scan Axis	Sc	an Mode	Range		Start, °	Stop), [©]	Step, °	Spe	eed, °/min
β	0D(con	tinuous) 🔽 Ab	solute	0.000		360.000		5.000	200.00	

Remember that α = 90° - χ

X. Pole Figure -5/5Background measurement conditions If Background measurements ==== 18. Background #2 Background #1 were selected, determine Receiving Step Receiving Receiving Receiving Step, ° 20 Angle, ° 20 Angle, ° Geometry the desired conditions Axis Slit #1, mm Slit #2. mm Slit #1. mm Slit #2, mm 5.000 25.7480 10.000 9.900 31.7480 10.000 9.900 Reflection α Duration, s Scan Axis Background Data Acquisition Method Scan Mode Start, ° Stop, ° Step, ° Range 1 point (β = Minimum intensity) Fixed time Absolute 1.5 Input your desired *File name* and *File location* here = 20. Run recommended sequence O Customize conditions Customize... Save measured data 21. Click *Run* then *OK* when completed _____ Sample name: Memo: α:34.6 For training with Silicon: Do not Run β:89.6 TD Value : 330234 Calculated scan duration: 34min 15s 400000-OK Run Cancel 22. If the parameters were chosen XRD Measurement properly, you should eventually 300000see intensity peaks appear at Flow sequence completed. • the appropriate 200000- α and β positions 100000-

XI. Rocking Curve – 1/5

- This sequence will perform a Rocking Curve using Parallel Beam optics
- 1. Select the *Rocking Curve* package under *XRD Measurement > Package Activities*
- 2. Drag the *Rocking Curve* package into the *Flow Editor* in *Sequence*
- 3. If *Optics Alignment (PB)* and *Sample Alignment (Thin Film)* were previously performed, then skip to *Step 11*
- 4. Left-click on *Optics Alignment (PB)*
- 5. Confirm the following are selected:
 - Optical settings \rightarrow Use default optics
 - Alignment conditions → Full
 - Registration destination \rightarrow User settings
- 6. Click *Run* ______ and then *OK* when completed

XI. Rocking Curve – 3/5

Alignment Method	Description
Without alignment	Drive each axis to the reflection position specified in the Move origin section. An additional alignment will not be performed.
Quick axis alignment	Drive each axis to the reflection position specified in the Move origin section, and align the ω and χ (or Rx) axes (for symmetric reflection) or ϕ axis (for asymmetric reflection).
Recursive axis alignment	Drive each axis to the reflection position specific in the Move origin section, and perform the ω scan as driving the χ (or Rx) axis (for symmetric reflection) or φ axis (for asymmetric reflection) step-by-step. Plot the peak intensity vs. the χ (or Rx) or φ axis to the optimized position, then align the ω axis.
Standard axis alignment	Drive each axis to the reflection position specified in the Move origin section, and perform the Rx, Ry scan to face the φ axis to the normal of the lattice plane. Then, align the ω axis.
Precise axis alignment	Drive each axis to the reflection position specified in the Move origin section, and perform the ω scan at four positions ($\varphi = 0^{\circ}$, 180°, 90°, -90°) to face the φ axis to the normal of the lattice plane. Then, align the ω (and χ) axes.

13.	Depending on the <i>Alignment method</i> chosen, it will perform	Rocking Curve Pre-Measurement ① ×			
	additional alignment – recommend <i>Quick axis alignment</i>	Rocking curve pre-measurement conditions	Move to origin		
		Alignment method: Quick axis alignment	✓ 20, °: 69.1280		
14.	If available, also recommend performing:	✓ Optimize 2θ	🗹 ω, °: 34.5640		
	• Optimize 20	Axis realignment after 2θ optimization	⊻ χ, °: 0.000		
	 Avis realignment after 2A optimization 	Scanning sequence: From ω to $\chi(\phi)$	✔ φ, °: 0.000		
			Read Current Positions		
15.	Before proceeding, check that your Origin Position	<u></u>	1		
	is set to desired plane using RS Viewer before proceeding	Reset Nove Area Send Area			

XI. Rocking Curve – 4/5 Run recommended sequence Customize conditions Customize... Save measured data Proceed to check the Post measurement setting = 16. - Change ω offset so that ω position becomes a half of 20 position 17. Click on *Run* — Post measurement \checkmark Change ω offset so that ω position becomes a half of 2 θ position Calculated scan duration: 8min 6s Axes will be aligned per the chosen 18. OK Run Cancel Alignment method Ts 2θ/ω Zs 2θ Zr ω Z θ/2θ Ry Ts 2θ/ω Zs 2θ Zr ω Z θ/2θ Ry Rx -0.53361, 8995871.2738, 0.037621 R_x [34,5640, 9260393,7252, 0.0365] ω 0002_Scan 2024Jul22-124905 -0001 Scan 2024Jul22-124446 1.104 - Si Wafe 004 RC Pre/1 we brankle CANA

9 Package Activities * XII. Reciprocal Space Map (RSM) - 1/5General General (BB) General (PB) Reflection SAXS Micro Area This sequence will perform a Reciprocal Space Map or RSM using Parallel Beam optics Ο Pole Figure Residual Stress Select the **RSM** package under **XRD Measurement** > **Package Activities** 1. Reflectivity Rocking Curve RSM 🕅 2. Drag the **RSM** package into the **Flow Editor** in **Sequence** Flow Editor ***** 3. If **Optics Alignment (PB)** and **Sample Alignment (Thin Film)** were previously performed, then skip to Step 11 Sequence Drop activities here ? × **Optics Alignment (PB)** 4. Left-click on *Optics Alignment (PB)* 👛 RSM Optical settings Incident monochromator: None Detics Alignment (PB) Receiving optics: Slit 5. Confirm the following are selected: 🕂 Sample Alignment (Thin Film) Run alignment for vertical transmission geometry • Optical settings \rightarrow Use default optics Use default optics Customize optics Customize... A Rocking Curve Pre-Measurement Alignment conditions → Full Alianment conditions 0 A RSM Measurement • Registration destination \rightarrow User settings \bigtriangledown Full Quick (Only receiving optics) Registration destination 6. Click **Run** PB XRD Measurement Optics attribute: New... and then **OK** when completed User settings O System settings Flow sequence completed. Registration date:

Q

? # X

0

?

?

?

×

XII. Reciprocal Space Map (RSM) – 4/5	
15. Left-click on <i>RSM Measurement</i>	↓□ Sample Alignment (Thin Film) ⑦ ▽ □ ↓△ Rocking Curve Pre-Measurement ⑦ ▽ □ ↓△ RSM Measurement ⑦
16. Click on <i>Read Current Positions</i> to align axis	ement 🕐 🗙
17. Use the Run recommended sequence or or click Customize conditions	Move to origin Δ
Scan conditions Incident slit, mm: 1.000 Receiving slit #1, mm: 1.000 Receiving slit #2, mm: 1.100 Step Axis Scan Mode Range Start, ° Stop, ° Number of Steps ω Relative -3.0000 3.0000 0.5000 13 Scan Axis Scan Mode Range Start, ° Step, ° Step, ° Speed, °/min	ons Customize
2θ/ω 0D(continuous) Relative -3.0000 3.0000 0.5000 100.000 Auto	

XII. Reciprocal Space Map (RSM) – 5/5

19.	Input your desired <i>File name</i> and <i>File location</i> here	Save measured data
20.	Click <i>Run</i> then <i>Ok</i> then OK when completed	Sample name: Memo: Calculated scan duration: 7h 25min 25s
	For training with Silicon: Do not Run	Calculated scan duration: /n 23min 23s OK Cancel XRD Measurement
Ts 2 30- - - 28- 28-	θ/ω Zs 2θ Zr ω Z φ χ Set-1	Prove sequence completed.
-3	-2.5 -2 -1.5 -1 -0.5 0 0.5 1 ⊿w,°	1.5 2 2.5 3

Х о Т 1.	HI. In-Plane Measuremer This sequence will perform an In-Plane Measurement Select the <i>In-Plane</i> package under <i>XRD Measurem</i>	nt or $2\theta_{\chi}/\phi - 1/5$ for $2\theta_{\chi}/\phi$ using Parallel Beam optics ment > Package Activities	Package Activities Image: Constraint of the second sec
2.	Drag the <i>In-Plane</i> package into the <i>Flow Editor</i> in S	Sequence	Rocking Curve RSM RSM In-Plane Plane Plan
3.	Left-click on Optics Alignment (In-Plane)	Optics Alignment (In-Plane)	
4.	 Confirm the following are selected: Optical settings → Use default optics	Optical settings Incident monochromator: None In-plane PSC: In-plane PSC: In-plane PSA: In-plane PSA:	Contract Co
5.	Click <i>Run</i> and then <i>OK</i> when completed	 Full Quick (Only receiving optics) Registration destination Optics attribute: PB(In-plane) User settings User defined settings New System settings Registration date: 2024-07-10 12:58:06 	XRD Measurement XRD Measuremen
		Post alignment Print out results Run OK Cancel	Flow sequence completed.

XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 2/5$

XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 3/5$

- 8. Left-click on *Sample Alignment (In-Plane)* to set *Sample Info*
- 9. Input your *Sample Info* per the dimensions

For training with Silicon: Thickness = 0.5 mm; Width & Height = 5 mm

- 10. Confirm the following are checked:
 - Direct beam half cut alignment
 - Surface normal alignment
 - Put a sample when the sample alignment starts

11. Click *Run*

- 12. If *Sample Alignment (In-Plane)* fails, try changing surface density (e.g. High)
- 13. Wait for the *Flow sequence completed* prompt to continue by clicking *OK* —

✓ ✓	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲					
+h Optics Alignment (In-Plane)	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲					
→ + □ Sample Alignment (In-Plane) ↓ In-Plane Pre-Measurement ↓ In-Plane Measurement ↓ In-Plane Measurement	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲					
+a Sample Alignment (In-Plane) ↓ In-Plane Pre-Measurement ↓ In-Plane Measurement ↓ ane)	 ⑦ ⑦ 0 0					
✓ ✓	© 0 © 0 • • •					
In-Plane Pre-Measurement ✓ In-Plane Measurement ✓ ane)	© © © © • • • •					
√ In-Plane Measurement √ ane)	© () () ()					
in-Plane Measurement ▽	© © ×					
⇒ ane)	(?) ×					
ane)	() ×					
Thickness, mm: 0.5 Width, mm: 5.0 Height, mm 5.0						
Alignment conditions						
Attachment and sample plate: RxRy attachment head + 4-inch wafer sample plate						
✓ Direct beam half cut alignment ✓ Surface normal alignment						
rd	\sim					
4.0 g/cm3)	~					
Run recommended sequence Customize conditions Customize						
	ht, mm 5.0 fer sample plate d 4.0 g/cm3) omize					

📥 In Diana

XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 4/5$

XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 5/9$

- 15. Recommend the following is checked:
 - Align azimuth (φ scan)
 - Optimize $2\theta_{\chi}$ after azimuth alignment
 - Azimuth realignment after $2\theta_{\chi}$ optimization
 - Optimize incident angle (ω scan)

In-Plane	e Pre-Measurement	(?) ×		
In-plane pre-measurement conditions	Incident angle	Move to origin		
 Align azimuth (φ scan) Optimize 2θχ after azimuth alignment 	ω, °: 0.3000 2θ, °: 0.3000	 ✓ 2θχ, °: 47.3030 ✓ φ, °: 68.652 		
Azimuth realignment after 2θχ optimization Optimize incident angle ($ω$ scan)	Read Current Incident Angle	Read Current Positions		

• Note: The following is for training purposes to learn how to move goniometer axes for In-Plane

16	Open the RS Viewer and find the Si (2 -2 0) plane —		Measurement				?
10.			Geometry: In-plane X-ray target: Cu-Kα ₁	Wavelength, nm: 0.15405	593		
			Reflection information				?
			Layer: Si(Sub)				
			Origin 2 -2 0	Min. F (rel.) to show, %: 0 💭	Highlighted: 2 -2 0	Select	Clear
			20B:47.30 F :72.10 F ² :5	i197.73 Incident angle: 9.9522E-16 Reflecte	ed angle: 9.9522E-16		
17	Remember to select In-plane for Geometry				Scan type:	ω step, 2θ/ω sca	an 🗸
т/.	Remember to select in plane for decimetry	<u> </u>		Origin	Abs/Rel	Start	Stop
			ω,°: 0.0000 🗘 —		Relative V	0.0000 🗘	0.0000 🗘
4.0			2θ/ω,°: 0.0000 🗘	I	Relative 🗸	0.0000 🗘	0.0000 🗘
18.	Click on <i>Move Axes</i>		χ,°: 0.0000 🗘 —	II	Relative 🗸	0.0000 🗘	0.0000 🗘
			φ,°: 68.6515 💭 —	II	Relative 🗸	-7.5000 🗘	7.5000 🗘
			2θχ,°: 47.3030 🗘 —	I	Relative 🗸	-150000 🗘	15.0000 🗘
19.	The <i>Goniometer</i> will now reposition the axes per the values described here			Sh	now area Reset	Move Axes	Send Area

XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 6/9$

 \checkmark

φ (Coarse)

φ (Fine)

2θχ

ω

Relative

Relative

Relative

Absolute

-50.000

-3.000

-3.0000

0.0000

50.000

3.000

3.0000

1.0000

1.000

0.100

0.040

0.0200

180.00

10.00

5.000

1.0000

• Speed

23. Click **Run**

and then **OK** when completed

Maximum intensity

Maximum intensity

Sequential center of gravity

Sequential center of gravity

 \sim

 \sim

 \sim

XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 7/9$

- 20. Once completed, the optimal ϕ and $2\theta_{\chi}$ parameters should be determined
- 21. If the parameters are not clearly optimized, check if the search is wide enough or if the initial parameters were appropriate
- 22. Left-click on In-Plane Measurement

23. Use the *Run recommended sequence* or click *Customize conditions*

XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 8/9$

Memo:

24. Click on **Read Current Positions** so that both the $2\theta\chi$ and ϕ are updated here if **Move to origin** is checked

- 25. Adjust the following parameters if desired:
 - Start
 - Stop
 - Step
 - Speed

For training with Silicon: See example ———

26. Input your desired *File name* and *File location* here

	Custor	mize - In-Pl	ane Measu	rement		(?) ×		
In-plane measurement conditions Sample: Inorganic Step: Fine Normal Coarse Speed: Slow Normal Fast Use recommended incident angle selected above	Set incident angle ω, °: 0.3000 2θ, °: 0.3000 Read Current Incident Angle			Move to origin 2θχ, °: 0.0000 φ, °: 0.000 Read Current Positions				
Image: Second time Image: Second time Image: Image: Second time Image: Second time Image: Image: Image: Second time Image: I								
Scan Axis Scan Mode	Range	Start, °	Stop, °	Step, °	Speed, °/min	Attenuator		
2θχ/φ 💙 0D(continuous) 💙	Absolute 🗸	42.000	52.000	0.096	5.00	Auto 🗸		
Calculated scan duration: 2min Set Recommended Values OK Cancel								
Save measured data Hie name: Issurement Data\Manager\Silicon Wafer Training Manual Scans\Si Wafer 011 In Plane Pre Meas.rasx Sample name:								
XIII. In-Plane Measurement or $2\theta_{\chi}/\phi - 9/9$

XIV. In-Plane Azimuth or Phi(ϕ) Scan – 2/2

- Input your desired *File name* and *File location* here
- 8. Click *Run* and then *OK* when completed

Save measured data

Post measurement

Run

OK

Cancel

XRD Measurement

Flow sequence completed.

 If the parameters were chosen properly, you should eventually see a series of peaks appear at the appropriate φ positions

λ / λ		$\sim 2/4$	in-Plane Pole Figure	0
X١	/. In-Plane Pole Figu	+ Optics Alignment (In-Plane)	(?)	
			\bigtriangledown	C.
			+ ¹ _i □ Sample Alignment (In-Plane)	(?)
6.	Left click In-Plane Pole Figure Measuren	nent — i		
	-		In-Plane Pre-Measurement	(?)
			↓ In-Plane Pole Figure Measurement	0
7.	Remember to input the following param	eters!		
	• Crystal system (i.e. Cubic)	In-Plane Pole Figure Measurement	? ×	
	• Index (i.e. 2 - 2 0)	Sample information		
	• Measurement angle (i.e. $2\theta_{\chi}$)	Thickness, mm: 0.50000 Cystal system: Cubic	\sim	
		Lnear absorption coefficient, 1/cm: 0.000		
		In-plane pole figure measurement conditions		
		h I Background		
		Index: 2 -2 0 measurement		
8.	Choose if any	Measurement angle, ^a 47.3235		
	Backaround measurements			
	will be rup if desired	Step: O The O Standard O Coarse		
		Speed: O Slow () Standard O Fast		
		·		
		Run recommended sequence Customize conditio	ns Customize	
		Save measured data		
9.	Choose to Run recommended sequence			
	or Customize conditions	File name: anager\Silicon Wafer Training Manual Sca	ns\Si Water 011 In Plane Pole Figure.rasx	
		Sample name:		
		Memo:		

XV. In-Plane Pole Figure – 3/4

- 10. Depending on your **Step** chosen, be aware that it may not be sufficient so choose the following carefully for α scan axes!
 - Start
 - Stop
 - Step
 - Speed

(Note: Will the peaks appear for α and β if arbitrarily chosen?)

11. If *Background measurements* were selected, determine the desired conditions

Background measurement conditions Background #1 Background #2 Receiving Receiving Receiving Step Receiving Step, ° 20 Angle, ° 20 Angle, ° Geometry Axis Slit #1, mm Slit #2, mm Slit #1, mm Slit #2, mm 5.000 25,7480 10.000 9.900 ✓ 31.7480 10.000 9.900 Reflection α Background Data Acquisition Method Scan Mode Start, ° Stop, ° Step, ° Scan Axis Range Duration, s 1 point (β = Minimum intensity) Fixed time Absolute 1.5

Data measurement conditions

Minimum ω an Incident slit, m	Minimum ω angle, °: 0.5000 ncident slit, mm: 1.000			Receiving s Receiving s	ilit #1, mm: ilit #2, mm:	1.0 2.1	00	Attenuator:	Auto 🗸
Scan Axis		Scan Mode		Range	Start, °		Stop, °	Step, °	Speed, °/min
α	0D(st	ep)		Absolute	0.00		20.00	5.00	
β	0D(co	ontinuous)	\sim	Absolute	0.000		360.000	3.000	150.000

Remember that $\alpha = \chi$ for in-plane!

XV. In-Plane Pole Figure -4/4

12.	Input your desired <i>File name</i> and <i>File location</i> here ——————————————————————————————————	Save measured data
		File name: anager\Silicon Wafer Training Manual Scans\Si Wafer 011 In Plane Pole Figure.rasx
13.	Click <i>Run</i> then <i>OK</i> when completed	Sample name:
		Memo:
	XRD Measurement	
	Flow sequence completed.	Calculated scan duration: 54min 47s OK Cancel

For training with Silicon: Do not Run

14. If the parameters were chosen properly, you should eventually see a series of peaks appear at the appropriate α and β positions

Package Activities Q XVI. In-Plane RSM - 1/3💮 Reflection SAXS 🕐 Micro Area 🕐 Pole Figure 🗇 Residual Stress • This sequence will perform an In-Plane RSM using Parallel Beam optics 🗇 Reflectivity 🗇 Rocking Curve প RSM Select the *In-Plane RSM* under *XRD Measurement > Package Activities* 1. n-Plane In-Plane RSM 2. Drag the *In-Plane RSM Figure* into the *Flow Editor* in *Sequence* Flow Editor 7 # X A 27 3. If **Optics Alignment (In-Plane)** and **Sample Alignment (In-Plane)** were previously Sequence performed, then skip to Step 4 Drop activities here (see XIII. In-Plane Measurement for review) 📋 In-Plane RSM Optics Alignment (In-Plane) ? 4. Left-click on *In-Plane Pre-Measurement* ? Sample Alignment (In-Plane) In-Plane Pre-Measurement 0? 5. Perform the *In-Plane Pre-Measurement* In-Plane RSM Measurement 0 ? (see XIII. In-Plane Measurement for review) – optimized φ and $2\theta \chi$ should be found 2θχ Ts 2θ/ω Zs 2θ Zr ω Z Ry Rx 2θ/ω Zs 2θ Zr ω Z Ry Rx φ 10,752, 1974,1211, 0,214 [47.3230, 2031.1210, 0.3070] 2000 2000 Wafer 011 In 0 Plane

\mathbf{x}							E	📮 In-Plane RSM		0
X١	/L. In-Plane RSIVI – 273							L Optics Alignment (In-I	Plane)	(?)
								La Sample Alignment (In	□ Diane)	٩
C	Loft click in Diana DCM Magguramont						l'			()
0.	Left Click <i>In-Plane KSIVI Weasurement</i>							🕅 In-Plane Pre-Measurer	ment	•
									\bigtriangledown	
_								📈 In-Plane RSM Measure	ment	1?
1.	Confirm <i>Move to origin</i> is checked ————								~	
				Customi	ze - In-Pla	ine RSM Mea	surement		?	×
8.	Click Read Current Positions and	In-plane RSN	M measurement conditi	ons		✓ Incident angle	2	Move to origin		
	Read Current Incident Angle to set the	Data acquisition method: φ step, 2θχ/φ scan						✓ 2θχ, °: 47.3015		
	proper <i>Origin</i>	Range: 0	Narrow Normal	Wide		20 °: 0.2400			111.052	
						Pand Current I	Hant Angle	Parad dur	rentPositions	1
0							ly were anyte		entrositions	
9.	Configure the following:	Manual e	exchange slit conditions	;						
	• Start		_				DO 4 0 50			
	• Stop	in-plane PSC	in-plane PSC 0	.51	in-pia	ne ibA: In-plane	PSA 0.5*	<u>~</u>		
	• Sten	Length-limit	ing slit: 10 mm		\sim		Read Curre	nt Optics		
	Step	Scan conditi	ons							
	• Speed			7						
		Incident slit,	mm: 0.100							
		Step Axis	Scan Mode	Range	Start, °	Stop, °	Step, °	Number of St	teps	
		φ	0D(step)	Relative	-3.000	3.000	0.100	61		
		Scan Axis	Scan Mode	Range	Start, °	Stop, °	Step, °	Speed, °/min	Attenuator	
		2θχ/φ	0D(continuous) 🗸	Relative	-3.000	3.000	0.096	5.00	Auto 🗸	/

XVI. In-Plane RSM - 3/3

10.	Input your desired <i>File name</i> and <i>File location</i> here	Save measured data
		File name:
11.	Click Run then OK when completed	Sample name:
	XRD Measurement ×	Memo:
	Flow sequence completed.	Calculated scan duration: 54min 47s Run OK Cancel

For training with Silicon: Do not Run

XVII. Monochromator Ge(220	$D) x 2 - 1/2 \qquad \qquad$
 This sequence will show how to use Monochromator Ge(220 Left-click on <i>Optics Alignment (PB)</i> tab to select optics =)x2 using Parallel Beam optics
	Optical settings
 Select Ge(220)x2 for the Incident monochromator — 	Incident monochromator Ge(220)x2 Receiving optics: Slit
3. Confirm <i>Use default optics</i> is selected under <i>Optical setti</i>	ngs Bun alignment for vertical transmission geometry Use default optics Customize optics Customize
4. Confirm <i>Full</i> is selected under <i>Alignment conditions</i>	Alignment conditions Full O Quick (Only receiving optics)
5. Confirm <i>User settings</i> is selected, then click <i>Run</i>	Registration destination
6. A Smart Message will appear indicating all the optics and attachments that need to be removed (indicated in RED)	Optics attribute: PB-Ge(220)x2 Image: User settings User defined settings Image: System settings New Registration date: 2024-06-20 12:02:04
and those that need to be instaned (indicated in GREEN)	Post alignment Print out results
	Run OK Cancel

XVII. Monochromator Ge(220)x2 - 2/2

To remove the *IPS adaptor* and install the *Ge(220)x2* perform the following: 7.

Remove the IPS adaptor.

XVIII. Grazing Incidence XRD or GIXRD – 2/5

6.	Confirm the following are selected:		Optics Alignment (PB)
	• Optical settings \rightarrow Use default optics		Optical settings
	• Alignment conditions \rightarrow Full		Incident monochromator: None
			Receiving optics: Slit
	• Registration destination \rightarrow User settings		Kun alignment for vertical transmission geometry Use default optics Customize optics Customize
7.	Click Run		Alignment conditions Full Quick (Only receiving optics)
	and then OK when completed		
		General (PB)	Registration destination
0	Loft click on Ontics Alignment (DR)	+ ¹ ₁ Optics Alignment (PB) (?)	Optics attribute: PB
0.	Beseiving DSA 0.5 tab		User settings New
	- Receiving PSA 0.5 lab		Registration date:
		+ ¹ ₁ Sample Alignment (Powder, Bulk) (?)	
9.	Change the <i>Receiving optics</i> to <i>PSA 0.5</i> °	General Measurement	Run OK Cancel
	and check Quick (Only receiving optics)		XRD Measurement ×
		Optics Alignment (PB)	Flow sequence completed.
		Optical settings	
10.	Click Run	Incident monochromator: None	ОК
	and then OK when completed as well	Run alignment for vertical transmission geometry	
		Use default optics Customize optics Customize	
		Alignment conditions	
		Quick (Only receiving optics)	

XVIII. Grazing Incidence XRD or GIXRD – 3/5

11.	Left-click on <i>Sample Alignment (Powder, Bulk)</i> to	Sample Alignment (Powder, Bulk)
	set Sample Info	Sample alignment conditions
		Attachment and sample plate RxRy attachment head + 4-inch wafer sample plate
12.	Set the Attachment and sample plate to	No height alignment Set registered position without alignment
	nxny attachment neua + 4-men wajer sample plate	Curved sample (Z scan only)
13.	Select <i>Flat sample</i>	Flat sample Sample height, mm: 5.0
14.	Input your <i>Sample Info</i> per the dimensions	Run recommended sequence Customize conditions
	Incident direction of Height x-ray when $\phi = 0 \text{ deg}$	✓ Put a sample every time
	Thickness	Run OK Cancel
		XRD Measurement ×
15.	Click Run and then OK when completed	Flow sequence completed.
		ОК

XVIII. Grazing Incidence XRD or GIX	RD − 4/5
16. Left-click on <i>General Measurement</i>	+□ Optics Alignment (PB) - Receiving PSA 0.5 ⑦
17. Left-click on the drop down for <i>Manual exchange slit conditions</i> ——	-+□ Sample Alignment (Powder, Bulk) ⑦ ✓ M General Measurement ⑦ ✓
18. Click on the box for <i>Manual exchange slit conditions</i> ——————	
19. Click on <i>Read Current Optics</i>	Manual exchange slit conditions Measurement conditions
20. Select 2 θ for the <i>Scan Axis</i>	Ianual exchange slit conditions
21. Input desired <i>Start, Stop, Step,</i> and <i>Speed</i> values	Incident Soller slit: Soller slit 5.0° Length-limiting slit: 2 mm Receiving optics: PSA 0.5° Description of the slit 5.0° V
22. Set both the <i>Receiving Slit #1</i> and #2 to 20 and 20.1 mm; respectively	Receiving Soller slit: Soller slit 5.0"
Measurement conditions	
Attachment base: χφZ attachment γ Attachment head: Attachment without movable axis	
Exec. Scan Axis Range Start, ° Stop, ° Step, ° Speed, °/min Incident Receiving Slit, mm Start, ° Stop, ° Step, ° Step, ° Speed, °/min Slit, mm Slit #1, mm	Receiving Attenuator Comment Options Im = Slit #2, mm = = =
1	20.100 V Open V Set ^
2 ✓ 2θ ✓ Absolute 48.0000 70.0000 0.0100 12.0000 1.000 20.000 3 ✓ 2θ ✓ Absolute 48.0000 70.0000 0.0100 12.0000 1.000 20.000	20.100 V Open V Set 20.100 V Open V Set

XVIII. Grazing Incidence XRD or GIXRD – 4/5

23. Left-click on *Set...*

Measu	rement	conditions	5																	
Attach	ment b	ase: χφΖ a	ttachme	nt				\sim	Attach	ment he	ad: Attachment	t without mova	ble axis		`	、				
	Exec.	Scan Axi	s	Range [= Sta	art, °	Stop, °	= Si	ep, °	= Sp	eed, °/min 😑	Incident Slit, mm =	Receiving Slit #1, mm =	Receiving Slit #2, m	m =	Attenuator =	Comm	ent 😑	Options	=
1	\checkmark	20	∼ Ab	osolute	✓ 48.0	000	70.0000	0.01	00	12.0	000	1.000	20.000	20.100	\sim	Open 🗠	1		Set	^
2	\checkmark	20	∼ Ab	osolute	√ 48.0	000	70.0000	0.01	00	12.0	000	1.000	20.000	20.100	\sim	Open 🗠	/		Set	
3	\checkmark	20	∼ Ab	osolute	✓ 48.0	000	70.0000	0.01	00	12.0	000	1.000	20.000	20.100	\sim	Open 🗸	/		Set	
Se	Set a as the Avis											Options - G	eneral M	easur	ement				?	
						Attachment base: χφZ attachment 🗹 Attachment head: Attachment without movable axis							~							
S۵	st th	o Oria	nin ta	a dag	irod	value		Exec		Axis		Action	Origin (Center)	Oscilla	tion Range (±)	Start	t	Stop	Spee
			, , , , , , , , , , , , , , , , , , , 		n eu	value	-	\checkmark	ω	1	Move to ori	gin	√ 0.1000	0						

- 26. You may wish to vary the ω values to see the impact on the angle to your desired peak
- 27. Clicking on the = box will *Copy* the value from the top row if you choose to keep the values the same for each row

XVIII. Grazing Incidence XRD or GIXRD – 5/5

Substrate Peak

28. Click on *Run* then *OK* when completed

after the measure atch min 31s	ment complete	ed.	
after the measure atch min 31s	ment complete	ed.	
after the measures atch min 31s	ment complete	:d.	
after the measure atch min 31s	ment complete	ed.	
		OK	•
) Measurement) Measurement	O Measurement

29. You may wish to run different values of ω for comparison

8. Record your time and make any notes in the *Sign-In Sheet*

TS-A. Initial Power Up

• This sequence is only used for Initial Power Up (power completely off)

- 1. The following should ONLY be performed if instructed by the *Lab Manager*
- 2. Toggle the *Safety Key* to the right and release =
- 3. Cabinet will perform *Power Up* sequence
- 4. The *Power ON* lights will illuminate

TS-B. Hypix Detector Troubleshooting

 \circ This sequence is only used for troubleshooting the Hypix Detector

- 1. If the *Hypix Detector* needs to be remotely connected to troubleshoot...
- 2. Click on *Remote Desktop Connection* and connect to **192.168.126.70**
- 3. No password needed to access
- 4. Provides status of detector
- 5. Click on *Operate -> Restart* to reset *Alarms* if necessary

퉣 Remote	Desktop Connection	—		\times
N	Remote Desktop Connection			
Computer: Username: You will be a	192.168.126.70 None specified sked for credentials when you conn	ect.		
Show C	ptions	Connect	He	elp

The credentials that were used to connect to 192.168.126.70 dic not work. Please enter new credentials.	
RIGAKU	
Password	
Domain: ENGR	
Please enter a user name and	password.
More choices	

END OF SLIDES