# Thin Film XRD Training Notebook

Lab Manager: Dr. Perry Cheung MSE Fee-For-Service Facility Materials Science and Engineering University of California, Riverside

August 28, 2024 (rev. 1.2)

## Before you begin...

- Complete the required safety training modules on LMS
  - □ Laboratory Safety Fundamentals
  - Hazardous Waste Management
  - **Q** Radiation Safety For Users of Radiation Producing Machines
  - Compressed Gas Safety
- **G** Submit a copy of your Training Transcript to Lab Manager
- □ Review the MSE Thin Film XRD Policies and Regulations
- Fill out the Thin Film XRD FAU Authorization Form with PI signature
- **Q** Receive a user name and temporary password for Faces scheduling
- Arrange a time for Thin Film XRD training with Lab Manager
- **C** Schedule a 2 hour block on Faces for your training
- Receive a SmartLab II password

### Thin Film XRD (Rigaku SmartLab II) Operation

- A. XRD Cabinet Overview
- B. Measurement Basics
- C. GUI Basics
- I. Startup
- II. XRD Detector
- III. XRD Optics
- IV. XRD Sample Attachment
- V. RS Viewer
- VI. Utility Activity
- VII. General (PB) or  $2\theta/\omega$  Scan
- VIII. Azimuth or Phi ( $\phi$ ) Scan
- IX. Reflectivity
- X. Pole Figure
- XI. Rocking Curve
- XII. Reciprocal Space Map (RSM)

- XIII. In-Plane Measurement or  $2\theta_{\chi}/\phi$
- XIV. In-Plane Azimuth or Phi ( $\phi$ ) Scan
- XV. In-Plane Pole Figure
- XVI. In-Plane RSM
- XVII. Monochromator Ge(220)x2
- XVIII. Grazing Incidence XRD or GIXRD
- XIX. Clean-up and Shutdown
- XX. Overnight Scan + Shutdown

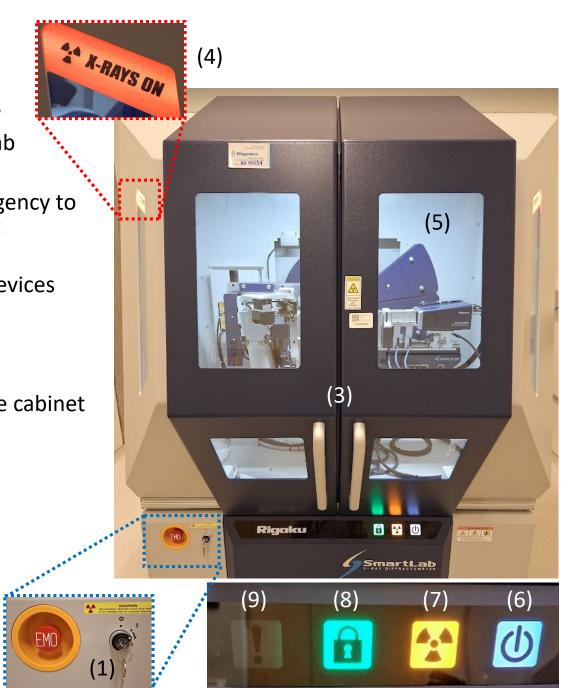
### **Troubleshooting**

- A. Initial Power Up
- B. Hypix Detector Troubleshooting

### A. XRD Cabinet Overview – 1/2

 $\,\circ\,$  This covers the Rigaku SmartLab II XRD Cabinet and its components

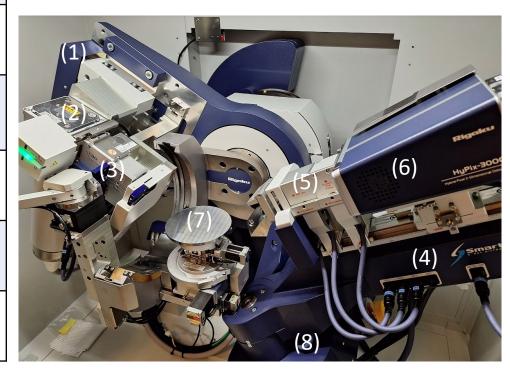
(1) Power Key: Power key used to start and stop SmartLab


(2) Emergency OFF Switch: Press this switch in the event of an emergency to cut off the power supply to the main unit

(3) Door: Opened to change samples and optical devices

- (4) X-Rays ON Lamp: Lights when X-rays are generated
- (5) Observation Window: Window used to observe the inside of the cabinet

(2)


- (6) Power-on Indicator: Lights when SmartLab is powered ON
- (7) X-RAYS ON Indicator: Lights when X-rays are generated
- (8) Door-Lock Indicator: Lights when the door is locked
- (9) Alarm Indicator: Flashes when an error occurs

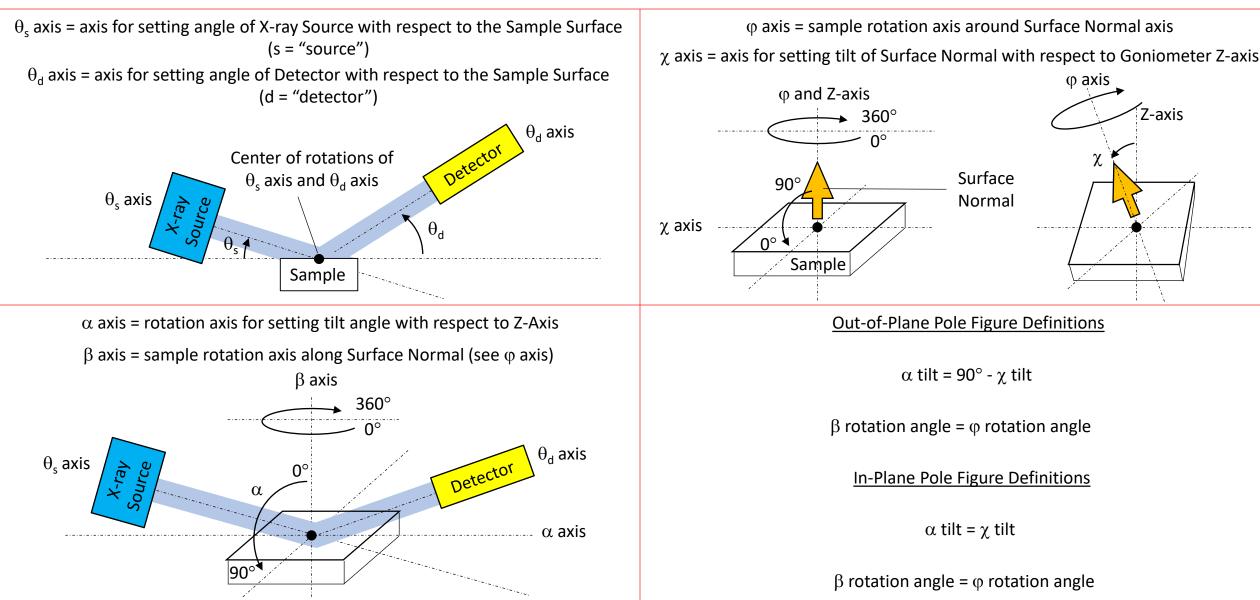


## A. XRD Cabinet Overview – 2/2

| (#) | Section                          | Description                                            |
|-----|----------------------------------|--------------------------------------------------------|
| 1   | Theta_s ( $\theta_s$ ) arm       | Arm for controlling X-ray beam incident angle          |
| 2   | X-ray Generator                  | X-ray generating device                                |
| 3   | Incident Optics                  | Optical devices for desired incident X-ray conditions  |
| 4   | Theta_d ( $\theta_d$ )Arm        | Arm for controlling the X-ray detector angle           |
| 5   | Receiving Optics                 | Optical devices for desired X-ray receiving conditions |
| 6   | Detector                         | X-ray detector                                         |
| 7   | Sample                           | Adjusts the position and orientation of sample         |
| 8   | In-Plane Arm ( $\theta_{\chi}$ ) | Theta_d arm used for In-Plane measurements             |

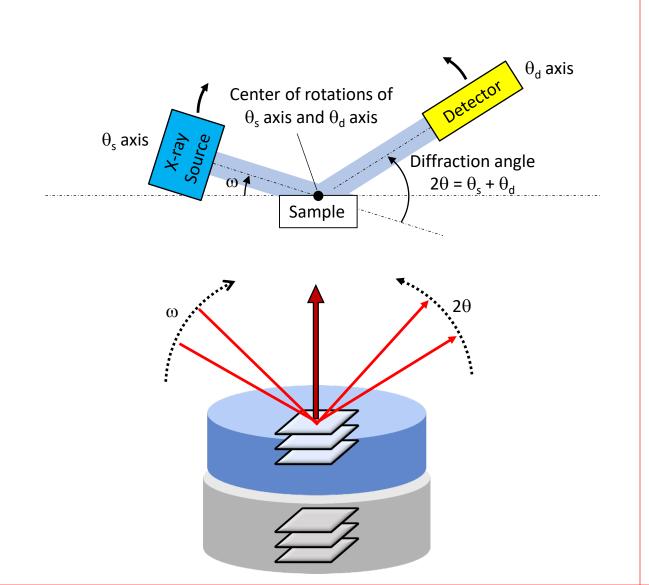





### B. Measurement Basics – 1/10

#### $\,\circ\,$ This summarizes the different Scans and Information obtained

| Measurement Technique (Scan)                             | Information                                                                                                                                                                                                                   | n Obtained                                                                                                                              | Scan Axis                                                                                                |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Out-of-Plane (1D)                                        | Information on lattice plane $\rightarrow$ Qualitative analysis                                                                                                                                                               | 2θ/ω<br>(Always 2θ = 2 x ω)                                                                                                             |                                                                                                          |
| Thin Film (1D)                                           | Information near sample surface (a $\rightarrow$ Qualitative analysis                                                                                                                                                         | $2	heta$ (Incident angle, $\omega$ , is fixed near the critical angle)                                                                  |                                                                                                          |
| In-Plane (1D)                                            | Information on lattice planes near a $\rightarrow$ Qualitative analysis                                                                                                                                                       | $2	heta_\chi/\phi$ (Incident angle, $\omega$ , is fixed near the critical angle)                                                        |                                                                                                          |
| Pole Figure (2D)                                         | Information on distribution of specific crystal orientation $\rightarrow$ Orientation analysis                                                                                                                                |                                                                                                                                         | $\chi(\alpha)$ , $\phi(\beta)$ (2θ or sum of 2θ and 2 $\theta_{\chi}$ is fixed at the diffraction angle) |
| Preferred orientation and crystallinity measurement (1D) | Information on degree of preferred orientation or crystallinity $\rightarrow$ Orientation and crystallinity analysis                                                                                                          |                                                                                                                                         | ω, χ, or φ                                                                                               |
| Rocking Curve (1D)                                       | Information on film structure and cry $ ightarrow$ Crystallinity, film thickne                                                                                                                                                |                                                                                                                                         | 2θ/ω                                                                                                     |
| Reciprocal Space Map or RSM (2D)                         | Information on d-value of 3-Dimensional<br>components of preferred orientation,<br>crystal orientation, and degree of preferred<br>orientation<br>→ Qualitative analysis, orientation<br>analysis, and crystallinity analysis | Information on film structure and<br>crystallinity of epitaxial or single crystal<br>→ Crystallinity analysis and epitaxial<br>analysis | 2θ/ω, ω (χ or φ)<br>2θ <sub>χ</sub> /φ, φ (χ or φ)                                                       |
| Reflectivity (1D)                                        | ightarrow Film thickness, density, and surfa                                                                                                                                                                                  | ce or interface roughness by fitting                                                                                                    | 20/0                                                                                                     |


### B. Measurement Basics – 2/10

#### $\,\circ\,$ This covers the Goniometer Optics and Measurement Axes



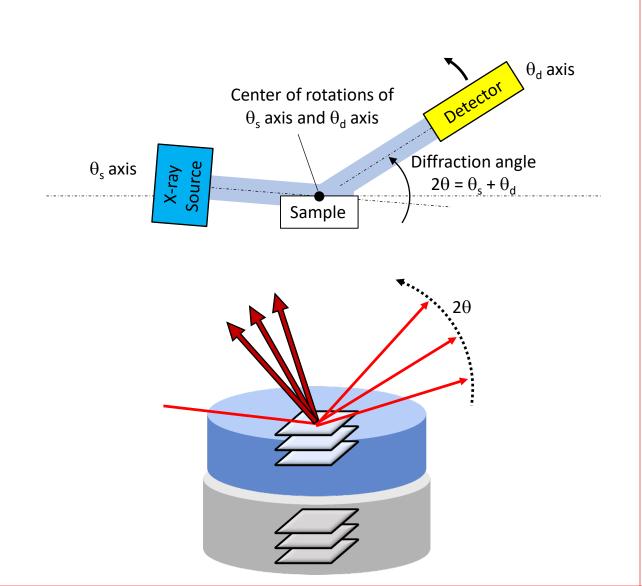
### B. Measurement Basics – 3/10

 $\,\circ\,$  This covers the Out-of-Plane (1D) or General (PB) XRD or 20/ $\!\omega$  Measurement



#### Movement:

•  $2\theta$  is driving arm;  $2\theta$  range = -10 to  $158^{\circ}$ 

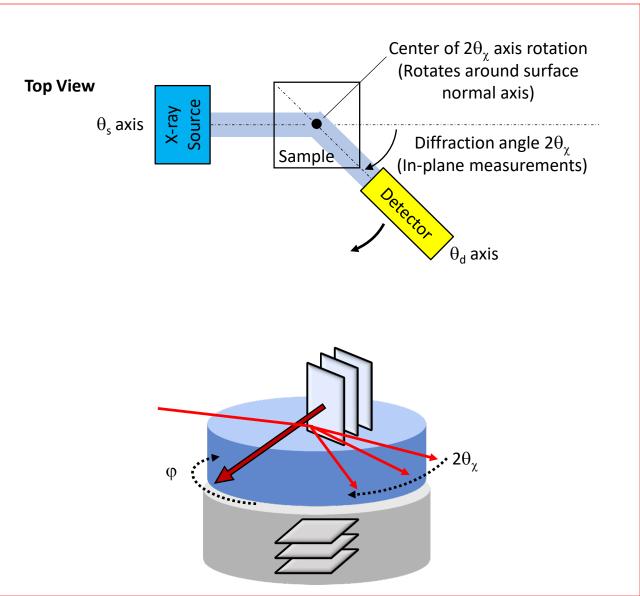

•  $\omega$  is slave arm;  $\omega = \frac{1}{2}(2\theta)$ 

#### Pros:

- Used for Qualitative analysis such as:
- Determining presence or absence of a preferred orientation
- Interplanar spacings of lattice planes parallel to surface
- Lattice constants corresponding to these interplanar spacings
- Crystallinity of a crystal lattice parallel to the surface Cons:
- Cannot observe lattice planes perpendicular to surface
- Cannot provide information on presence or absence of the in-plane orientation
- Cannot distinguish between a fiber-oriented and a single crystal

### B. Measurement Basics – 4/10

 $\,\circ\,$  This covers the Thin Film (1D) or Grazing Incidence XRD or GIXRD Measurement




#### Movement:

- $2\theta$  is driving arm;  $2\theta$  range = -15 to  $120^{\circ}$
- $\omega$  is set near a small critical angle usually between 0.1 to 1° Pros:
- Avoids scattering from the substrate
- Used for Qualitative analysis such as:
- For unoriented (or weakly oriented) polycrystal samples
- Lattice constants
- Crystallinity of a sample
- Depth dependence of above physical quantities Cons:
- Cannot be used to analyze strongly oriented polycrystal sample or single crystal

### B. Measurement Basics – 5/10

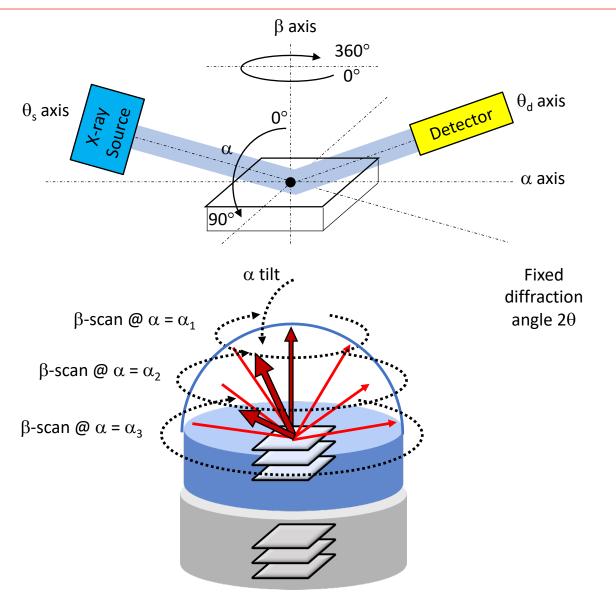
 $\circ~$  This covers the In-Plane (1D) XRD or  $2\theta_{\chi}/\phi$  Measurement



#### Movement:

- $2\theta_{\chi}$  is driving arm;  $2\theta_{\chi}$  range = -3 to 89°
- $\omega$  is set near a small critical angle usually between 0.1 to 1°
- $\phi$  is slave arm;  $\phi = \frac{1}{2} (2\theta_{\chi})$

#### Pros:


- Similar to GIXRD with respect to depth of analysis
- Used for Qualitative analysis such as:
- Investigating presence or absence of the preferred orientation
- Interplanar spacings of lattice planes perpendicular to the surface
- Lattice constants corresponding to these interplanar spacings
- Crystallinity of the crystal lattice perpendicular to the surface
- Presence or absence of in-plane orientation
- Distinguish between fiber-oriented sample and single crystal or confirm presence or absence of twinning

#### Cons:

- Cannot observe lattice planes parallel to surface
- Cannot provide information on presence or absence of the outof-plane orientation

### B. Measurement Basics – 6/10

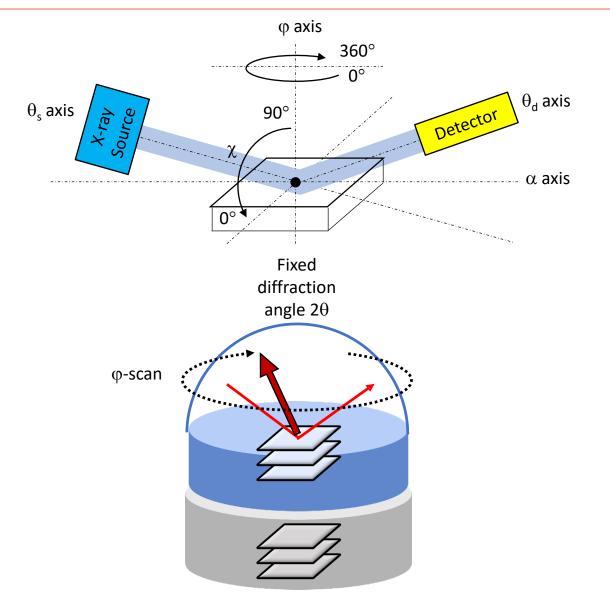
 $\circ$  This covers the Pole Figure (2D) Measurement



#### Movement:

- $2\theta$  is kept constant;  $\omega = \frac{1}{2}(2\theta)$
- $\alpha$  is stepped;  $\alpha$  range = -5 to 95°
- $\beta$  is continuously rotated;  $\beta$  range = -720 to 720°

#### Pros:

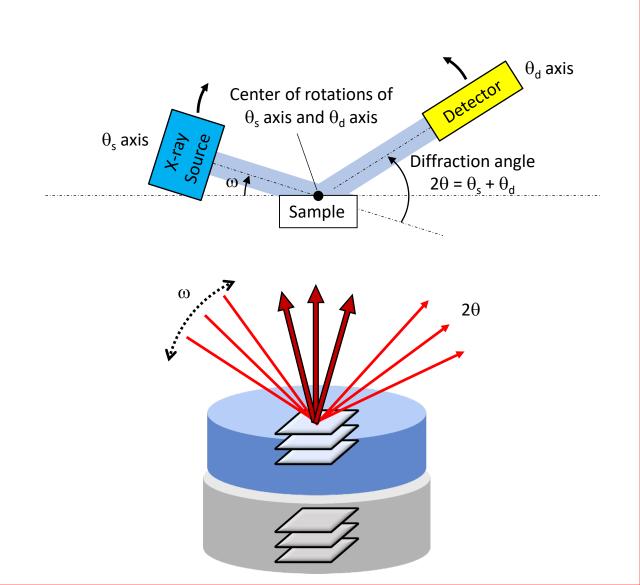

- Measures diffraction intensity distributions by rotating the sample in all directions while keeping the diffraction angle constant
- Direction at high diffraction intensity is observed corresponds to the preferred direction of the pole figure axes – indicating that crystallites with the measurement planes oriented in that direction are dominant

#### Notes:

- Remember that  $\alpha$  = 90°  $\chi$  in SmartLab II
- Choose  $\alpha$  step values carefully!
- $\alpha$  step controls the resolution (and max intensity)
- Speed of  $\beta$  scan controls the sign-to-noise ratio of scans

### B. Measurement Basics – 7/10

 $\circ~$  This covers the Preferred Orientation (1D) or Azimuth or  $\phi$  Scan Measurement




#### Movement:

- $2\theta$  is kept constant;  $\omega = \frac{1}{2}(2\theta)$
- $\phi$  is continuously rotated;  $\phi$  range = -720 to 720° Pros:
- Same underlying principles for pole figure measurement
- Measures a cross-section of a pole figure measurement
- Measures the spread (width) of diffraction intensity distribution
- Related to degree of preferred orientation (vs randomly orientated sample)
- Related to mosaicity (vs perfect single crystal)
- Quicker to perform than full pole figure measurement Notes:
- Remember to optimize  $\chi$  value first!
- Speed of  $\boldsymbol{\phi}$  scan controls the sign-to-noise ratio of scans

### B. Measurement Basics – 8/10

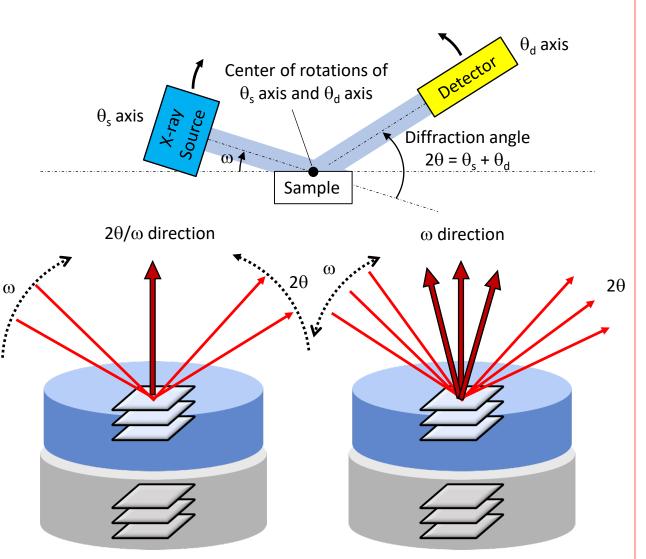
#### $\,\circ\,$ This covers the Rocking Curve (1D) Measurement



#### Movement:

- $\omega$  is driving arm;  $\omega$  (relative) range = -5° to +5°
- $2\theta$  is kept constant;  $2\theta = 2\omega$

#### Pros:


- Measures diffraction intensity distributions along a reciprocal lattice vector
- Planes no longer parallel with sample surface are brought onto the Bragg plane
- Measures changes in interplanar spacing
- Generally used to evaluate the thickness or mixed crystal ratio of an epitaxial film on a sample
- Width of rocking curve depends upon mosaic spread of the grains, density of dislocations, and substrate curvature
- FWHM is recorded and indication of quality of intended epitaxial growth or preferential orientation

#### Notes:

• Do not mix up width of rocking curves with the widths on the peaks in the  $2\theta/\omega$  scans

### B. Measurement Basics – 9/10

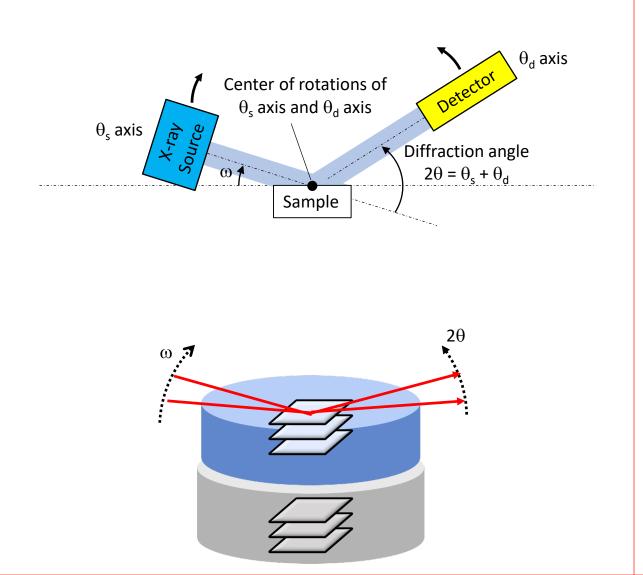
 $\,\circ\,$  This covers the Reciprocal Space Mapping or RSM (2D) Measurement



#### Movement:

- $2\theta/\omega$  scan is one mapped direction
- $\omega$  scan is second mapped direction

Pros:


- Measures diffraction intensity distributions and plots result in reciprocal space
- Central coordinates, shapes, and positional relationships of the reciprocal lattice points (film and substrate) appearing in 2D map provides a wide range of info on crystal structure

#### Notes:

- Each  $\omega$  step  $\rightarrow 2\theta/\omega$  scan is performed (q<sub>x</sub>)
- Each  $2\theta/\omega$  step  $\rightarrow \omega$  scan (Rocking Curve) is performed (q<sub>v</sub>)

### B. Measurement Basics – 10/10

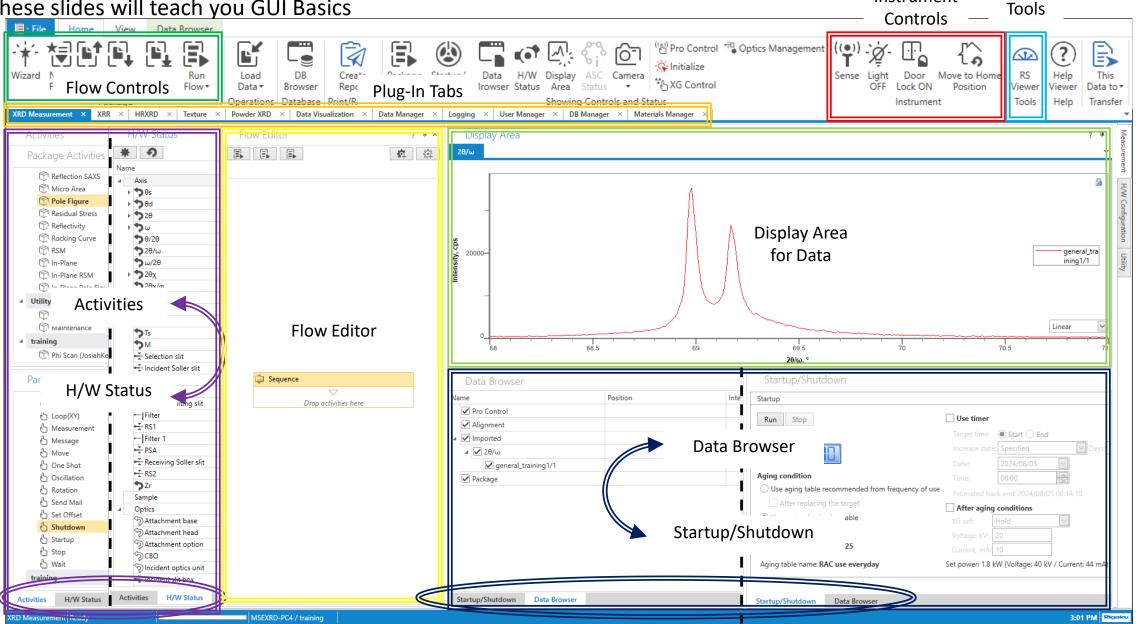
#### $\,\circ\,$ This covers the Reflectivity (1D) Measurement



#### Movement:

- $2\theta$  is driving arm;  $2\theta$  range = 0 to  $10^{\circ}$
- $\omega$  is slave arm;  $\omega = \frac{1}{2}(2\theta)$

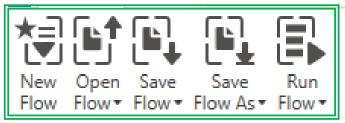
#### Pros:


- Can be used for crystalline or amorphous samples
- Evaluates thickness, density, and surface or interface roughness of thin-film materials
- Evaluates structure of a multilayer or single layer film
- Measures samples nondestructively

#### Cons:

- Requires surface and interfaces are flat
- May require monochromator to yield higher resolution for thicker films

### C. GUI Basics -1/3


#### • These slides will teach you GUI Basics



Instrument

### C. GUI Basics – 2/3

- Flow Controls used to control your Measurement Flow (or Measurement Program)
  - *Wizard* will help you selected the recommend packages for desired measurement/analysis



- New Flow remove existing Flow and create a New Flow package
- **Open Flow** open existing **Flow** that you have saved in the **File System**
- Save Flow saves your edited Flow into the Files System
- Save Flow As saves your edited Flow as a new file into the Files System DB Cre Run Load Flow -Data • Rep Browser Run Flow E Run Flow Ctrl+F5 • **Run Flow** – runs your entire **Flow** from top to bottom Run Selected Part Ctrl+F6 *Run Selected Part* – only runs the *Selected Part* ٠ Run from Selected Part Ctrl+F7
  - Run from Selected Part will run your entire runs your flow from top to bottom starting from Selected Part (useful for Shutdown)





### C. GUI Basics -3/4

- Instrument Controls useful controls for the Instrument
  - Light Turns the Light ON and OFF inside Cabinet

• Door Lock – Toggles the Door Locks ON and OFF

• Move to Home Position – Moves the Goniometer axes to the starting Home Position useful for exchanging optics

Door

Light

ON

• Tools Control – opens Reciprocal Space (RS) Viewer – see V. RS Viewer



Light

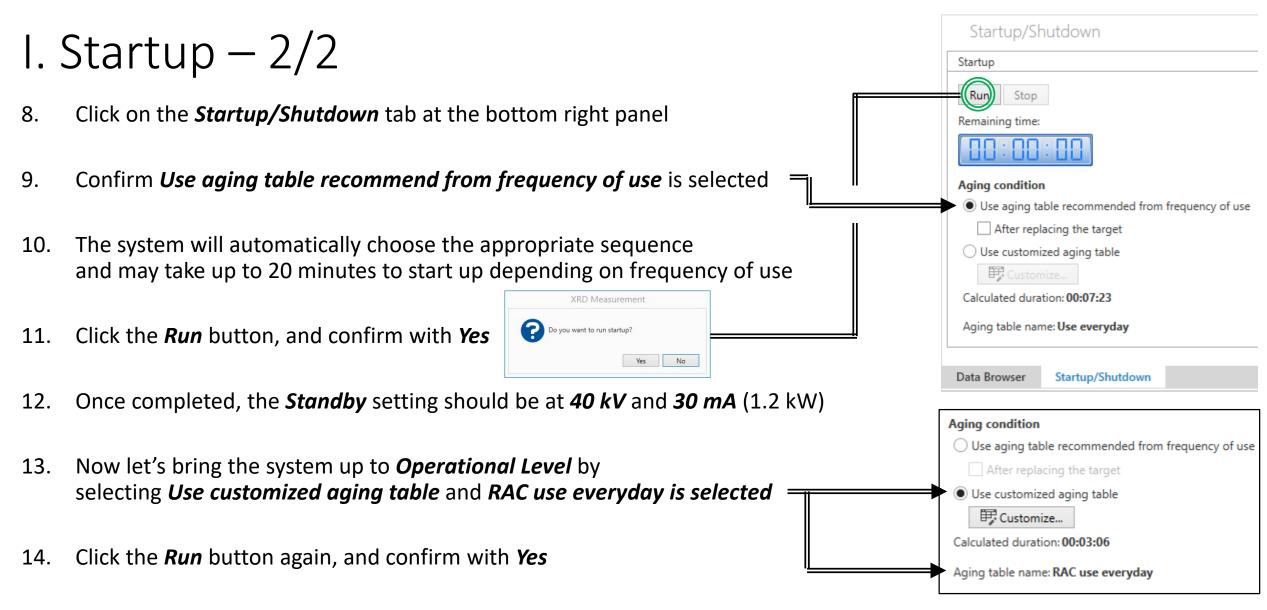






### I. Startup - 1/2

- This sequence is used for Initial Startup sequence
- 1. Sign-in on the *Sign-in Sheet*
- 2. First *Double-click* on *SmartLab Studio II* software icon
- 3. Enter your *Login* and *Password* 
  - Login: Faces Login Password: Provided by Lab Manager
- 4. Confirm that "*XRD Measurement | Ready*" is shown  $\implies$  XRD Measurement Ready then proceed to Step 7
- 5. If *Status* is *"XRD Measurement |Ready (Not Connected)"*, → XRD Measurement Not ready (Connected) you will need to follow *Steps 5-6* to restart the *Server*
- 6. Access lower right *Hidden Icons* tray,




then find the ICServerTaskTray icon



7. If icon is not *Green*, then *Right-click* and click on *Restart* to enable, then proceed to *Step* 7





15. The *Operational Level* should now be set to 40 kV and 44 mA (1.8 kW) for normal operation

### II. XRD Detector -1/1

#### $\,\circ\,$ This covers the Detector

| Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Orientation (Applications) Window Pr       |                                                                               |        | tector                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------|
| HyPix-3000<br>(2D Detector)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Horizontal<br>(Default)                    | Vertical<br>(Micro Area)                                                      | Window | Window                                                                                                                     |
| Image: constraint of the sector adaptor         Image: constraint | <image/> <section-header></section-header> | <image/> <section-header></section-header>                                    |        | Protector<br>must be<br>inserted to<br>protect<br>Detector<br>when<br>swapping out<br>Receiving<br>Optics!<br>\$\$\$\$\$\$ |
| нициинициинициинициинициинициинициини                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            | n of detector adapter and<br>ne of <b>300 mm</b> $\Rightarrow$ <b>Detecto</b> |        | -                                                                                                                          |

### III. XRD Optics – 1/6

#### $\circ\,$ This covers the Incident Optics Unit #1

| Incident Optics Unit #1 | Incident Optics              |                              |                                       |                        |  |
|-------------------------|------------------------------|------------------------------|---------------------------------------|------------------------|--|
| CBO – Cross Beam Optics | Parallel beam<br>method (PB) | Para-focusing<br>method (BB) | Micro Area (MA)<br>0.5                | Micro Area (MA)<br>0.3 |  |
|                         | PB                           | BB                           | C C C C C C C C C C C C C C C C C C C |                        |  |

III. XRD Optics – 2/6

• This covers the Incident Optics Unit #2

| Incident Optics Unit                   | <b>#2</b>                          | Incident Parallel Slits (Aperture) + IPS Adaptor |                         |                          |
|----------------------------------------|------------------------------------|--------------------------------------------------|-------------------------|--------------------------|
| Incident Parallel Slit (IPS) + Adaptor | Ge(220) 2-bounce<br>monochromator  | Soller Slit<br>(Open)                            | Soller Slit<br>(5.0deg) | In-plane PSC<br>(0.5deg) |
| <image/>                               | Ge(220)x2<br>Soller<br>sit<br>open |                                                  |                         |                          |

III. XRD Optics – 3/6

#### $\,\circ\,$ This covers the Incident Slit

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Length-Limiting Slit (Aperture) |      |      |        |        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------|------|--------|--------|--|
| Incident Slit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 mm                           | 5 mm | 2 mm | 0.5 mm | 0.2 mm |  |
| Image: Notest and the set of |                                 | 25   |      |        |        |  |

III. XRD Optics -4/6

#### $\circ$ This covers the Receiving Slit

| Receiving Slit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                     | k $\beta$ Filters (Thickness) |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|-------------------------------|-------------|
| Receiving Slit Box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Insertion Diagram | CuK β 1D<br>(23 μm) | CuK β 15 μm<br>(15 μm)        | 9 kW filter |
| Image: Sector |                   |                     |                               | 9kW filter  |

### III. XRD Optics – 5/6

 $\,\circ\,$  This covers the Receiving Optics Unit #1

| Receiving Optics Unit #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Parallel Slits Analyzers (A | Aperture) + ROD Adaptor |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|
| Parallel Slit Analyzer (PSA) + Adaptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PSA<br>(Open)               | PSA<br>(0.5deg)         |
| PSA open     PSA open |                             | <image/>                |

### III. XRD Optics – 6/6

• This covers the Receiving Optics Unit #2

| Receiving Optics Unit #2                                                                             | Receiving Parallel Slits ( | Aperture) + RPS Adaptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Receiving Parallel Slit (RPS) + Adaptor                                                              | Soller Slit<br>(5.0deg)    | In-Plane PSA<br>(0.5deg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PSA open<br>PSA open<br>PSA open<br>PSA<br>0.5deg<br>PSA<br>0.5deg<br>PSA<br>0.5deg<br>PSA<br>0.5deg | Soller<br>Soller<br>S.Des  | Real and a second secon |
|                                                                                                      | RPS adaptor                | RPS adaptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

### IV. XRD Sample Attachment – 1/2

#### $\circ$ This covers the Sample Attachment Heads

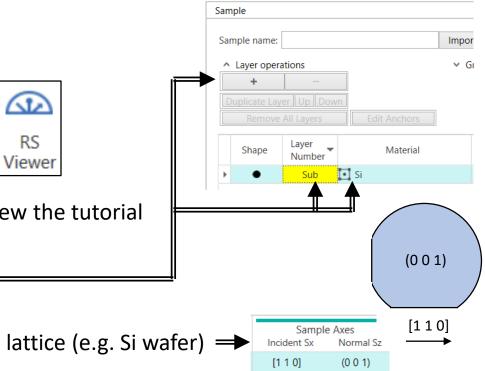
| Attachment Platform     | Attachment Heads (Applications)      |                                                                       |                                                                             |  |  |
|-------------------------|--------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| χφZ Attachment Platform | Standard<br>(Alignment, Bulk Sample) | RxRy<br>(Reflectivity, RSM, In-Plane)                                 | XY-20 mm<br>(Micro-area)                                                    |  |  |
|                         |                                      |                                                                       |                                                                             |  |  |
|                         |                                      | <i>Platform</i> via the black                                         | t Head to the Attachment<br>triangle ▼ indicator.<br>GE THE CONNECTOR PINS! |  |  |
|                         |                                      | Secure in place by closing the <i>Clasps</i> and <i>Front Latch</i> . |                                                                             |  |  |

### IV. XRD Sample Attachment – 2/2

• This covers the Sample Plates (Note: Does not have recognition chips – you must remove even if not instructed!)

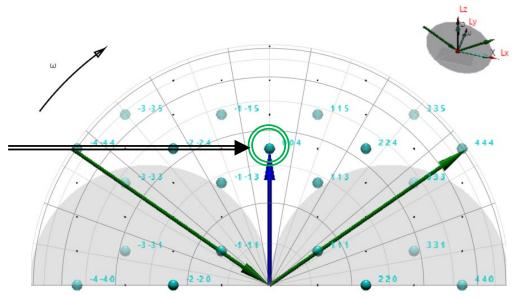
| Sample Plate            | Picture | Installation | Removal |
|-------------------------|---------|--------------|---------|
| Height Reference Sample |         |              |         |
| Sample Spacer           |         |              |         |
| Wafer Sample Plate      |         |              |         |

### V. RS Viewer - 1/2

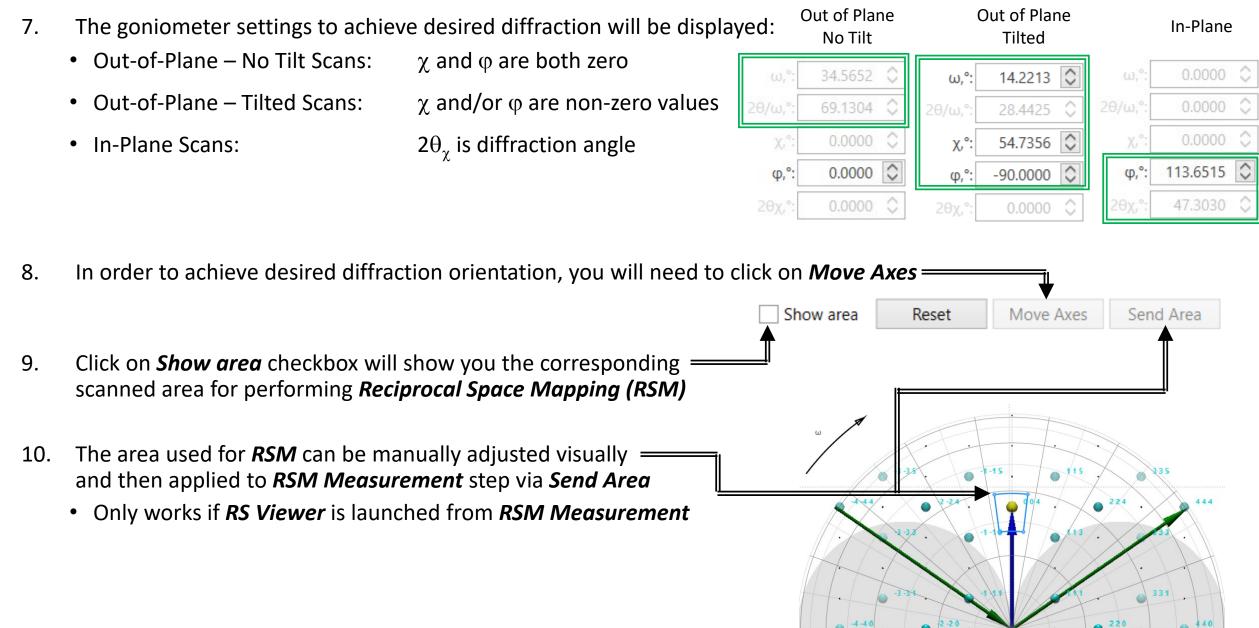

- These slides will teach you about the Reciprocal Space (RS) Viewer
- Click on the **RS Viewer** icon at the top of the **XRD Measurement** plugin 1.
- Click on the ? icon to open up the RSViewer\_UserManual\_en.pdf to review the tutorial 2.
- 3. Add and edit layers to build up your substrate + films
- Edit the *Samples Axes* (if known) to correlate actual sample to reciprocal lattice (e.g. Si wafer)  $\implies$ 4.

#### 5. Set *Geometry* for your scans: *Out of plane* or *In-Plane*



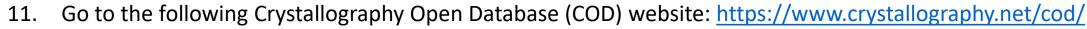

6. Enter in desired reflection plane in *Origin* or select the *Shape Icon* 






(Jr

RS




### V. RS Viewer -2/2

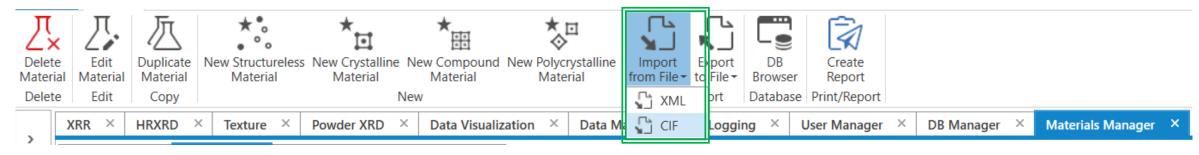


V. RS Viewer - 3/4

• These slides will teach you how to load your sample information if not in the database already



|     |                                                                         | Accessing COD Data                                                 |         |          |                                | Search                                 |                             |            |
|-----|-------------------------------------------------------------------------|--------------------------------------------------------------------|---------|----------|--------------------------------|----------------------------------------|-----------------------------|------------|
| 12. | Click on the <i>Search</i>                                              | Browse<br>Search<br>Search by structural<br>formula<br>JSME search |         |          | (For more in Search by COD ID: | nformation on search see the <u>hi</u> | ints and tips)              | ]          |
| 13. | Search for your desired sample us<br>(e.g. Text, Journal, Chemical Form |                                                                    | hod ——— |          | <u>OpenBabel FastSearch</u> :  | Enter <u>SMILES</u> :                  | Search                      |            |
| 14. | Identify the desired sample inform                                      | nation you want to in                                              | nport   | Note: su | text (1 or 2 words)            | is currently available in a subset     | of COD containing 225655 st | tructures. |


| Y 11.6303 L; Tholence, J L; Tournier, R | COD ID 🔺 📕     | inks Formula 🛦  | Space group 🛦  | Cell parameters | Cell volume 🛦 | Bibliography                                                                                             |
|-----------------------------------------|----------------|-----------------|----------------|-----------------|---------------|----------------------------------------------------------------------------------------------------------|
|                                         | <u>1001452</u> | Ba2 Cu3 O7<br>Y | <u>P m m m</u> | 11.6303         | 172.1         | Structure of the 100 K Superconductor Ba~2~ Y Cu~3~ O~7~ between (5- 300)K by Neutron Powder Diffraction |

15. Click on the *CIF* link and download the file into your *CIF Folder* 



### V. RS Viewer -4/4

17. Click on the *Import from File* tab and select *CIF* 



- 18. Select the *CIF* file that you had downloaded
- 19. The sample information should now be available for you in the *Material* selection in *RS Viewer*

| Sample            |                 |                                       |               |           |                        |                           |
|-------------------|-----------------|---------------------------------------|---------------|-----------|------------------------|---------------------------|
| Sample name:      |                 | Import Sample                         | Export Sample | Send Samp | ble                    |                           |
| ▲ Layer operation | ations          | ✓ Group operation                     | tions         |           |                        |                           |
| +                 | -               |                                       |               |           |                        |                           |
| Duplicate Lay     | er Up Down      |                                       |               |           |                        |                           |
| Remove            | All Layers      | Edit Anchors                          |               |           |                        |                           |
| Shape             | Layer<br>Number | Material                              | Show re       | flection  | ow reflection<br>dices | Show forbidden reflection |
| ▶ ■               | L1 🚺            | Barium yttrium copper oxide (2/1/3/7) |               |           |                        |                           |
|                   | Sub 🚺           | c:                                    |               |           |                        |                           |

## VI. Utility Activity -1/2

- This sequence will perform a Mirror Alignment and HyPix Adjustment after using the Monochromator Ge(220)x2
- Select the *Mirror Alignment* activity under *XRD Measurement > Part Activities* 1.

Run

2. Drag the *Mirror Alignment* activity into the *Flow Editor* in *Sequence* 

Click on *Mirror Alignment* activity 4. and select **CBO**, and click **OK** 

3.

📋 Sequence  $\bigtriangledown$ Drop activities here Drag the *HyPix Adjustment* activity in *Sequence* ? × Mirror Alignment 👛 Sequence  $\nabla$ Alignment conditions 💥 Mirror Alignment ? Alignment mirror: CBO 🚊 Sequence OK Cancel  $\bigtriangledown$ 🗙 Mirror Alignment ? ? × HyPix Adjustment 🗙 HyPix Adjustment ? Adjustment conditions Temperature correction ✓ Create mask file Center position and distance between sample and detector adjustment Run recommended sequence O Customize conditions Customize... Run OK Cancel

XRR × HRXRD × Powde

? # X

Q

? # ×

**\$** 

XRD Measurement X

Quick Measurement (BB)

X Analyzer Alignment X HyPix Adjustment X HyPix Calibration

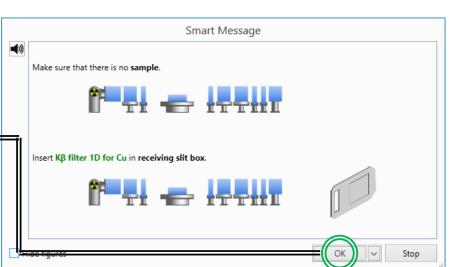
X Mirror Alignment

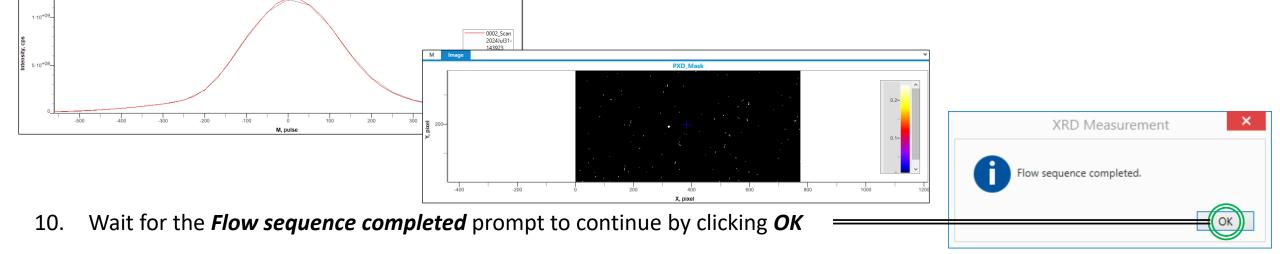
Activities Part Activities

Utility Activity

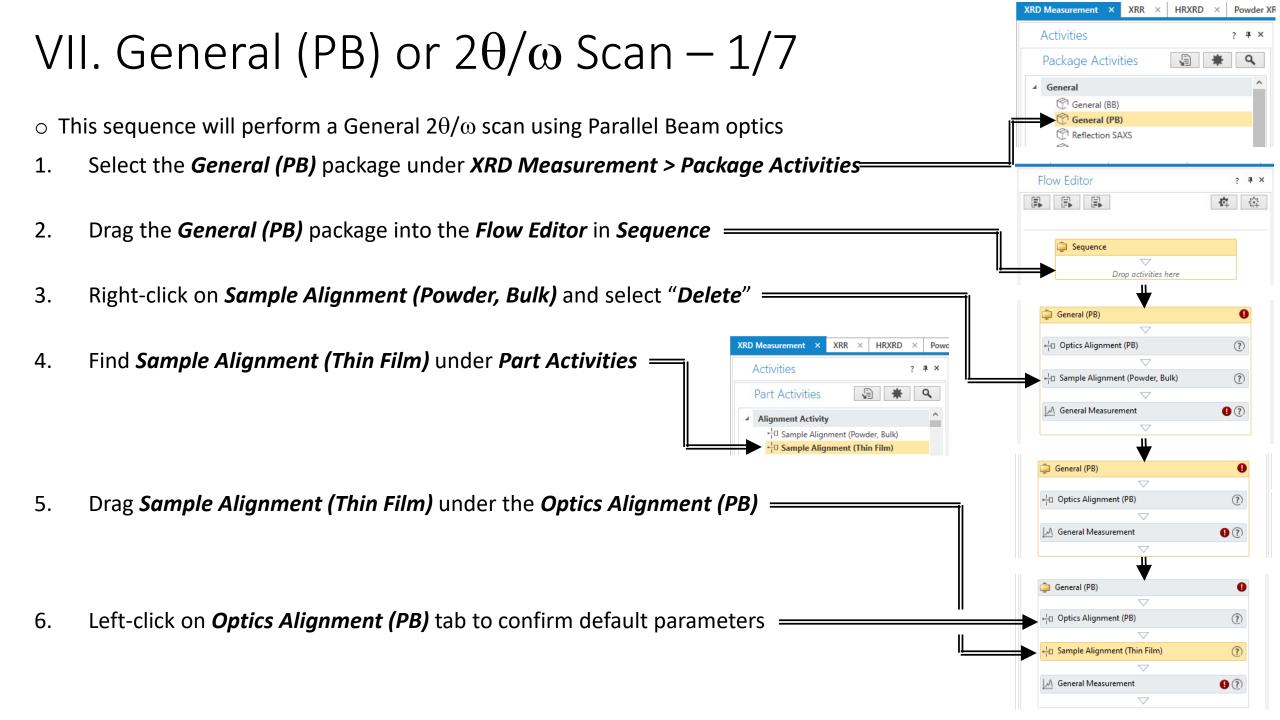
Flow Editor

- 5. Click on *HyPix Adjustment* activity and confirm only the first 2 options are checked, and click **OK** 
  - Temperature correction a)
  - b) Create mask file


## VI. Utility Activity -2/2


- 6. Click on *Run Flow* to perform Mirror Alignment and HyPix Adjustment automatically
- A Smart Message will appear indicating all the optics and attachments that need to be removed (indicated in RED) and those that need to be installed (indicated in GREEN)
- 8. Proceed to perform each step in sequence and click **OK** when completed =

Note: Your Smart Message may differ from example shown


[6, 1202702568:9802\_280

9. Mirror Alignment will be performed first, followed by HyPix Adjustment









# VII. General (PB) or $2\theta/\omega$ Scan – 2/7

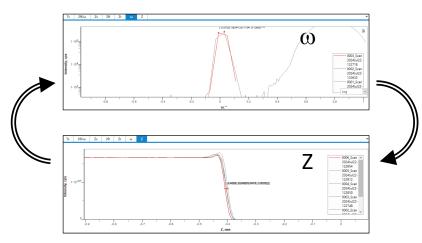
- 7. Confirm *Use default optics* is selected under *Optical settings*
- 8. Confirm *Full* is selected under *Alignment conditions*
- 9. Confirm *User settings* is selected, then click *Run*

| Incident monochro                                          | mator None                            |       |  |  |  |  |
|------------------------------------------------------------|---------------------------------------|-------|--|--|--|--|
| Receiving optics:                                          | Slit                                  |       |  |  |  |  |
|                                                            | for vertical transmission geometry    |       |  |  |  |  |
| _                                                          | -                                     |       |  |  |  |  |
| Use default optics                                         |                                       |       |  |  |  |  |
| Alignment conditio                                         | ons<br>Only receiving optics)         |       |  |  |  |  |
| ● Full ○ Quick (                                           | Only receiving optics)                |       |  |  |  |  |
|                                                            | Only receiving optics)                |       |  |  |  |  |
| ● Full ○ Quick (                                           | Only receiving optics)                |       |  |  |  |  |
| Full      Quick (                                          | Only receiving optics)<br>ation       | New   |  |  |  |  |
| Full Quick (     Registration destin     Optics attribute: | Only receiving optics)<br>ation<br>PB | V New |  |  |  |  |

10. A *Smart Message* may appear indicating all the optics and attachments that need to be *removed* (indicated in **RED**) and those that need to be *installed* (indicated in **GREEN**)

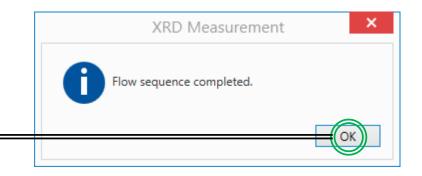
|     | Smart Message                                                                                                                        |                          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| ∎×  | Replace Soller slit open with Soller slit 5.0° in IPS adaptor.                                                                       |                          |
|     | fter er tretti                                                                                                                       |                          |
|     | Replace length-limiting slit 5 mm with length-limiting slit 10 mm in integ                                                           | rated incident slit box. |
|     | î                                                                                                                                    |                          |
|     | Remove the <b>RxRy attachment head</b> .                                                                                             |                          |
|     | Î <sup>®</sup> ─₽ <mark>▌╺</mark> ═╸ <mark>┟┱┯</mark> ╽╽╖                                                                            |                          |
|     | Install standard attachment head in <b>xoZ attachment platform</b> .                                                                 |                          |
|     | f ri 🖶 irriil                                                                                                                        | Ì                        |
|     | Install Height reference sample plate in standard attachment head.                                                                   |                          |
|     | f                                                                                                                                    |                          |
|     | Insert center slit in Height reference sample plate.                                                                                 |                          |
|     | f ri 🖶 irrii                                                                                                                         | 5                        |
|     | Attach the detector plane of <b>HyPix-3000 (horizontal)</b> to 300 mm.<br>(Adjust the mark of the <b>detector adaptor</b> to 350 mm) |                          |
| E F | lide figures                                                                                                                         | OK V Stop                |

11. Click *OK* when completed \_\_\_\_\_\_


# VII. General (PB) or $2\theta/\omega$ Scan – 3/7

System will perform **Optics Alignment** on various axes (Average time  $\approx 4$  minutes) 12.  $\mathsf{T}_{\mathsf{s}}$ ω 0001\_Scan 2024Jul22-121700 0001\_Scan 2024Jul22-122041 Wait for the *Flow sequence completed* prompt to continue by clicking *OK* 13. × XRD Measurement Z<sub>r</sub>  $2\theta/\omega$ 0001\_Scan 2024Jul22-121821 Flow sequence completed. Ok  $\mathbf{Z}_{\mathbf{s}}$ 2θ 0001\_Scan 2024Jul22-121937 0001\_Scan 2024Jul22-121858 Left-click on Sample Alignment (Thin Film) to 14. set **Sample Info** ៉ General (PB) 0  $\nabla$ -In Optics Alignment (PB) ? 15. Input your *Sample Info* per the dimensions = ? Sample Alignment (Thin Film) Incident direction of Height x-ray when  $\phi = 0 \deg$ ℳ General Measurement •  $\bigtriangledown$ Width ? Thickness Sample Alignment (Thin Film) Sample information (i) Thickness, mm: 0.5 Width, mm 5.0 Height, mm: 5.0 • For training with Silicon: Thickness = 0.5 mm; Width & Height = 5 mm

# VII. General (PB) or $2\theta/\omega$ Scan – 4/7


- 16. Confirm the following are checked:
  - Direct beam half cut alignment
  - Surface normal alignment
  - Put a sample when the sample alignment starts

### 17. Click *Run* (Average time $\approx$ 6 minutes) \_\_\_\_\_

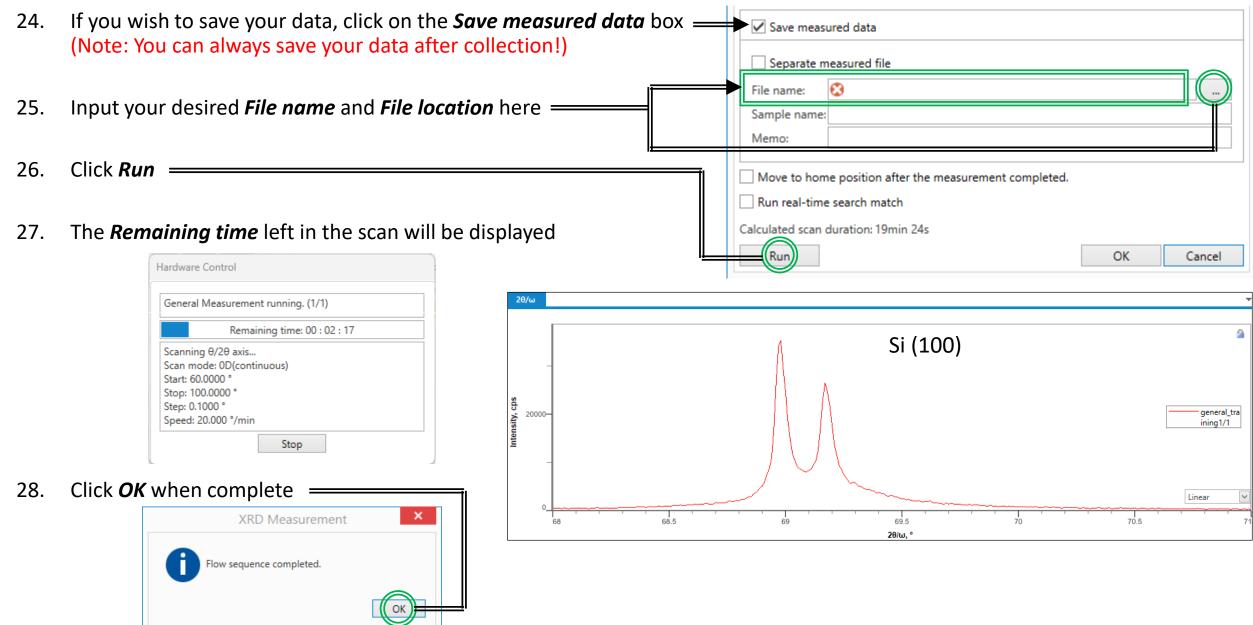


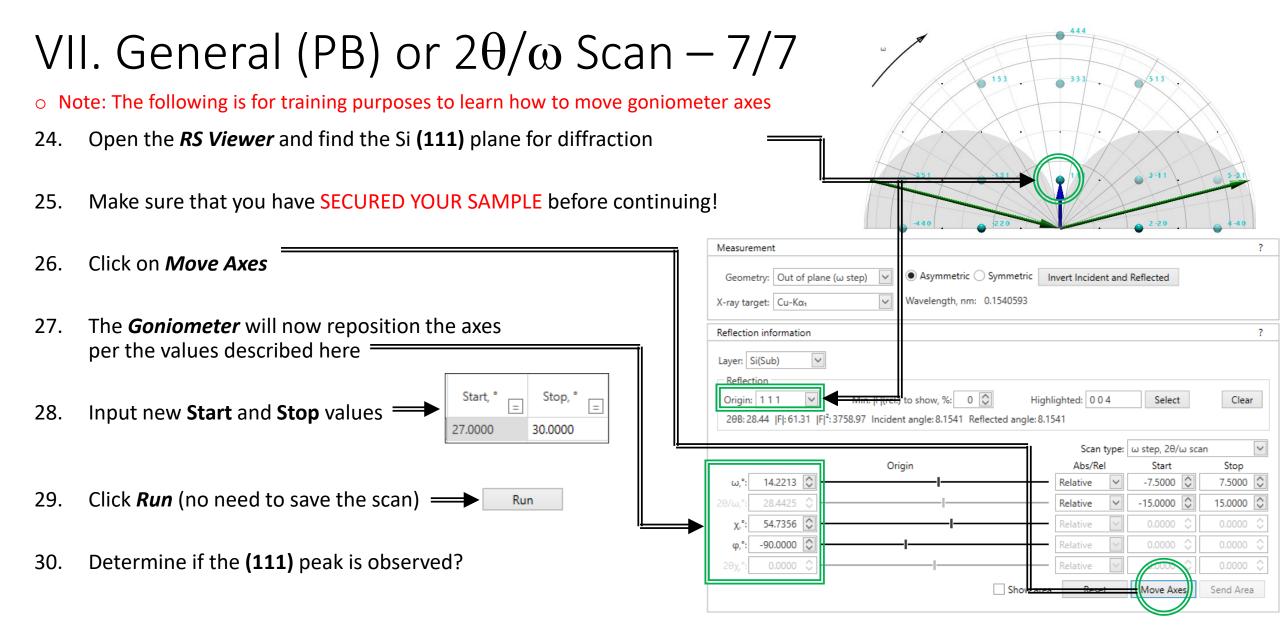
|                                                                               | Sample Alignment (Thin Film)             |  |  |  |  |  |
|-------------------------------------------------------------------------------|------------------------------------------|--|--|--|--|--|
| Sample information                                                            |                                          |  |  |  |  |  |
| Thickness, mm: 0.5                                                            | Width, mm: 5.0 Height, mm: 5.0 (i)       |  |  |  |  |  |
| Alignment condition                                                           | 5                                        |  |  |  |  |  |
| Attachment and sample plate: RxRy attachment head + 4-inch wafer sample plate |                                          |  |  |  |  |  |
| ✓ Direct beam half                                                            | cut alignment 🗹 Surface normal alignment |  |  |  |  |  |
|                                                                               | Alignment criteria: Standard             |  |  |  |  |  |
|                                                                               | Surface density: High (> 4.0 g/cm3)      |  |  |  |  |  |
| ✓ Put a sample whe                                                            | n the sample alignment starts            |  |  |  |  |  |
| Run recommended sequence      Customize conditions     Customize              |                                          |  |  |  |  |  |
|                                                                               |                                          |  |  |  |  |  |

- 18. If *Sample Alignment (Thin Film)* fails, try changing surface density
- For training with Silicon: Surface density should be set to High
- 19. Wait for the *Flow sequence completed* prompt to continue by clicking *OK*



# VII. General (PB) or $2\theta/\omega$ Scan – 5/7


| 20. | Left-click on | General | <b>Measurement</b> t | o set scan | conditions |
|-----|---------------|---------|----------------------|------------|------------|
|-----|---------------|---------|----------------------|------------|------------|


|    | General Measurement             |         |            |         |          |        | ?        | ×                  |            |                     |                        |                            |                            |              |           |           |   |
|----|---------------------------------|---------|------------|---------|----------|--------|----------|--------------------|------------|---------------------|------------------------|----------------------------|----------------------------|--------------|-----------|-----------|---|
|    | Manual exchange slit conditions |         |            |         |          |        | •        | Detector conditior | 15         |                     |                        | •                          |                            |              |           |           |   |
| Me | Measurement conditions          |         |            |         |          |        |          |                    |            |                     |                        |                            |                            |              |           |           |   |
| At | tachi                           | ment ba | ase: χφΖ a | attach  | iment    |        |          |                    | ✓ Attachme | ent head: Attachmer | it without moval       | ble axis                   |                            | ~            |           |           |   |
|    |                                 | Exec.   | Scan Axi   | is<br>= | Range    | =      | Start, ° | Stop, °            | Step, °    | Speed, °/min =      | Incident<br>Slit, mm 😑 | Receiving<br>Slit #1, mm = | Receiving<br>Slit #2, mm 😑 | Attenuator = | Comment = | Options = |   |
|    | 1                               |         | 2θ/ω       | <       | Absolute | $\sim$ | 68.0000  | 71.0000            | 0.0100     | 4.000               | 1.000                  | 1.000                      | 1.100 🗸                    | Open 🗸       |           | Set       | ^ |
|    | 2                               |         | θ/2θ       | $\sim$  | Absolute | $\sim$ | 3.0000   | 80.0000            | 0.0100     | 4.000               | 1.000                  | 1.000                      | 1.100 🗸                    | Open 🗸       |           | Set       |   |

### 21. Select $2\theta/\omega$ for the *Scan Axis*

- 22. Adjust the following parameters based on your desired scan conditions
  - Start, °: Enter starting scan position for  $2\theta$  angle (e.g.  $68^{\circ}$ )
  - **Stop**, °: Enter ending scan position for  $2\theta$  angle (e.g.  $71^{\circ}$ )
  - Step, °: Enter scan step size for  $2\theta$  angle (e.g.  $0.01^\circ$ ) controls resolution or spacing of data points
  - **Speed**, °/min: Enter the scan speed (e.g. 4°/min) controls the signal/noise (S/N) ratio
- 23. The following can be increased if you wish to increase the x-ray exposure to your sample in the width dimension
  - Incident Slit, mm
  - Receiving Slit #1, mm
- Default values are automatically chosen based on sample dimensions
- Receiving Slit #2, mm

### VII. General (PB) or $2\theta/\omega$ Scan – 6/7





31. If the (111) peak is not observed  $\rightarrow$  sample orientation is mismatched with **RS Viewer** via the  $\varphi$  position

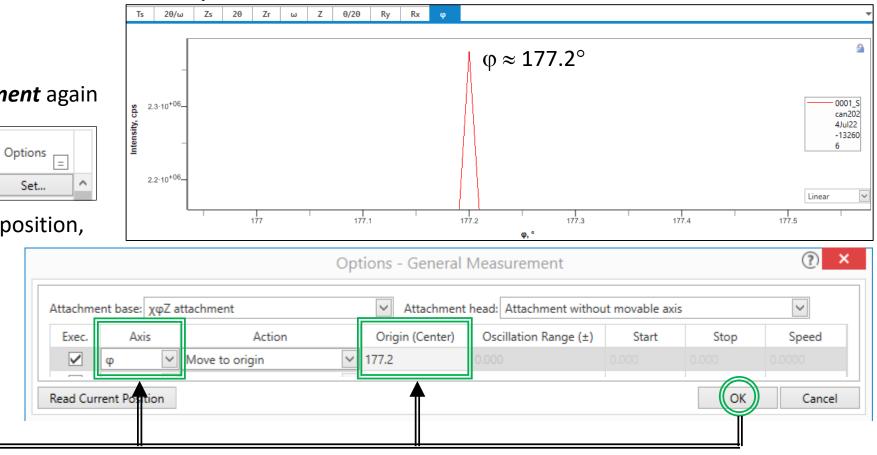
### VIII. Azimuth or $\phi$ Scan – 1/3

- $\circ~$  This sequence will perform an Azimuth or  $\phi$  Scan
- 1. Left-click on *General Measurement*

2.

3.

4.


5.

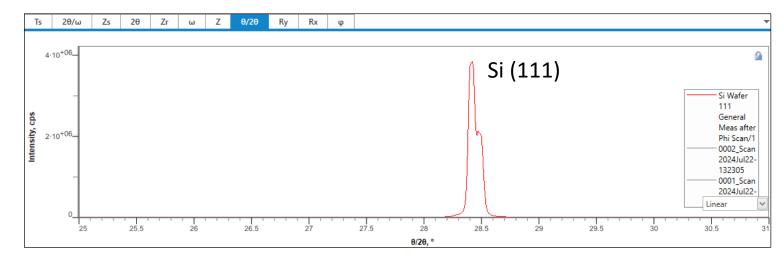
|                                                                                                | General Me                                                         | asurement                  |                                            |               | (?) ×              |            |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------|--------------------------------------------|---------------|--------------------|------------|
| Manual exchange slit conditions                                                                | Kβ filter condition                                                |                            | Detector condition                         | ons           | •                  |            |
| Measurement conditions                                                                         |                                                                    |                            |                                            |               |                    |            |
| Attachment base: X $\phi$ Z attachment                                                         | tachment head: Attachmer                                           | nt without movable axi     | 5                                          | $\sim$        |                    |            |
| Exec. Scan Axis Range Start, Stop, Stop, Step                                                  | ,°Speed, °/min                                                     |                            | eiving Receiving<br>#1, mm = Slit #2, mm = | Attenuator Co | omment _ Options _ |            |
| 1 2θ/ω Absolute 27.0000 30.0000 0.0100                                                         | 4.000                                                              | <b>1.000</b> 1.000         |                                            | 🗸 Open 🔽      | Set ^              |            |
| 2 🗹 φ 🖌 bsolute 🖌 0.000 360.000 0.100                                                          | 120.00                                                             | 1.000 1.000                | 1.100                                      | 🖌 Open 🖂      | Set                |            |
| IIII 3 □ 19/29 Intil Absolute Intil 3 0000   80 0000   0 0100                                  | <u>4 000</u><br>Τs <u>2θ/ω</u> Zs 2θ                               | 1 000 1 000<br>Zr ω Z θ/2θ |                                            | A Onen V      | Set                |            |
| Select φ for the <i>Scan Axis</i> for <b>#2</b>                                                | 13 20/00 23 20                                                     | 21 0 2 0/20                | ΝΥ ΝΑ Ψ                                    |               |                    |            |
| Set <b>Start = 0°</b> and <b>Stop = 360°</b><br><b>Step = 0.1°</b> and <b>Speed = 120°/min</b> | - Si (111<br>2:10 <sup>+06</sup> -<br>st;<br>1.10 <sup>+06</sup> - | L)<br>≠ 90                 | )°                                         | ≠ 180°        | ¢ 270°             |            |
| Click <b>Run</b> (no need to save scan)                                                        |                                                                    |                            | 100 150                                    | φ, °          |                    | , I<br>350 |
| Your spectra will look similar to this                                                         | <b>:</b> +:                                                        | 000 400                    |                                            |               |                    | ≠ 0 or     |

showing the (111) peaks are not precisely positioned at  $\varphi = 90^{\circ}$ , 180, 270, 360 due to sample offset!

## VIII. Azimuth or $\phi$ Scan – 2/3

- 6. Zoom-in one of the peaks...
- 7. Left-click on *General Measurement* again
- 8. Click on *Set...* under *Options*
- Set φ to the value of your peak position, and click OK \_\_\_\_\_\_




10. Set *Scan Axes* back to  $2\theta/\omega$  and input *Start* and *Stop* values back to  $27^{\circ}$  and  $30^{\circ}$ 



11. Click **Run** again  $\implies$  Run

### VIII. Azimuth or $\phi$ Scan – 3/3

12. You should see a similar spectra showing the (111) peak at around  $2\theta_b = 28.4^\circ$ as suggested by the *RS Viewer* 



- 13. Some measurements may perform "*Pre-Measurements*" that will identify and set the goniometer settings (e.g.  $2\theta$ ,  $\omega$ ,  $\phi$ ,  $\theta_{\chi}$ , etc...) for your scans, but may not always succeed or be available
- 14. It is still up to the user to be comfortable controlling and moving the **Axes** and setting the **Origin** when appropriate

## IX. Reflectivity -1/4

- This sequence will perform a Reflectivity Measurement
- Select the *Reflectivity* package under *XRD Measurement > Package Activities* 1.
- 2. Drag the *Reflectivity* package into the *Flow Editor* in *Sequence*
- 3. If **Optics Alignment (PB)** and **Sample Alignment (Thin Film)** were previously performed, then skip to Step 11 **Optics Alignment (PB)**

Optical settings

Receiving optics:

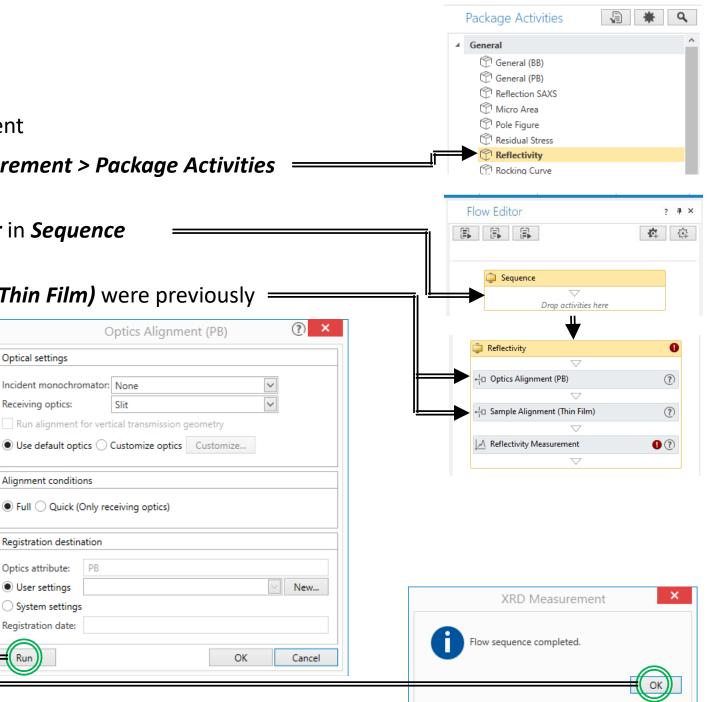
Alignment conditions

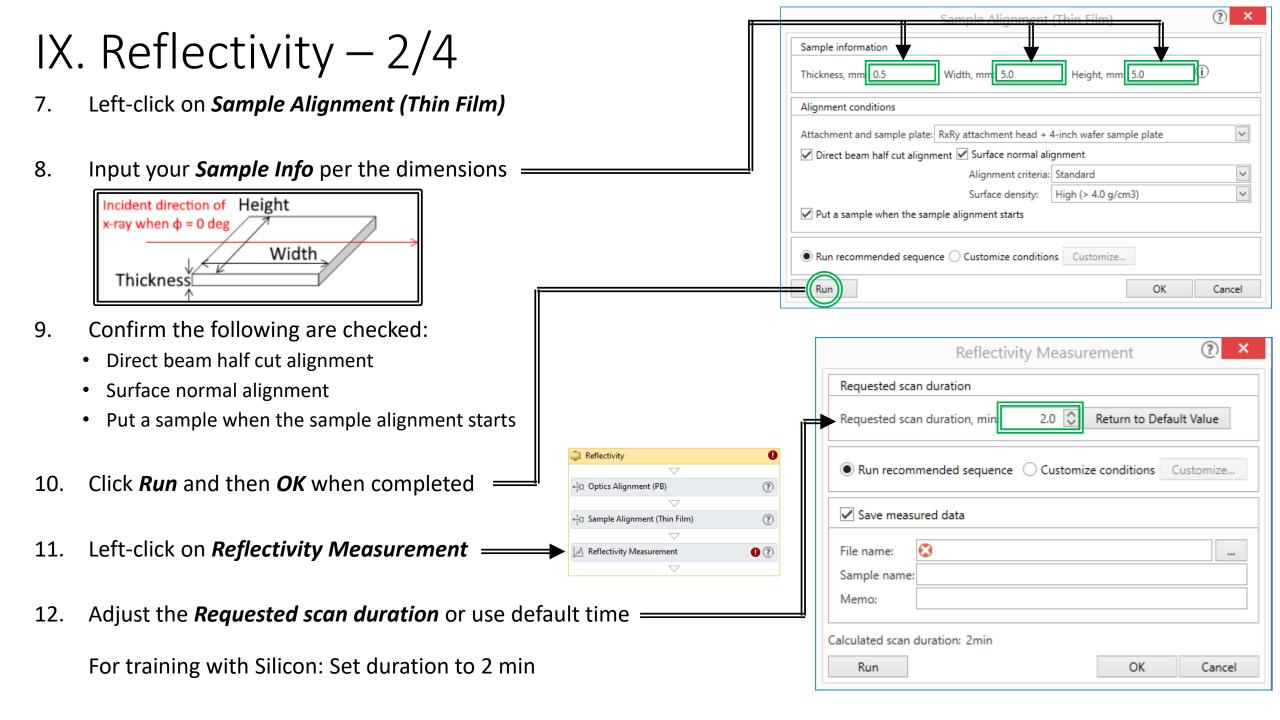
Registration destination

PB

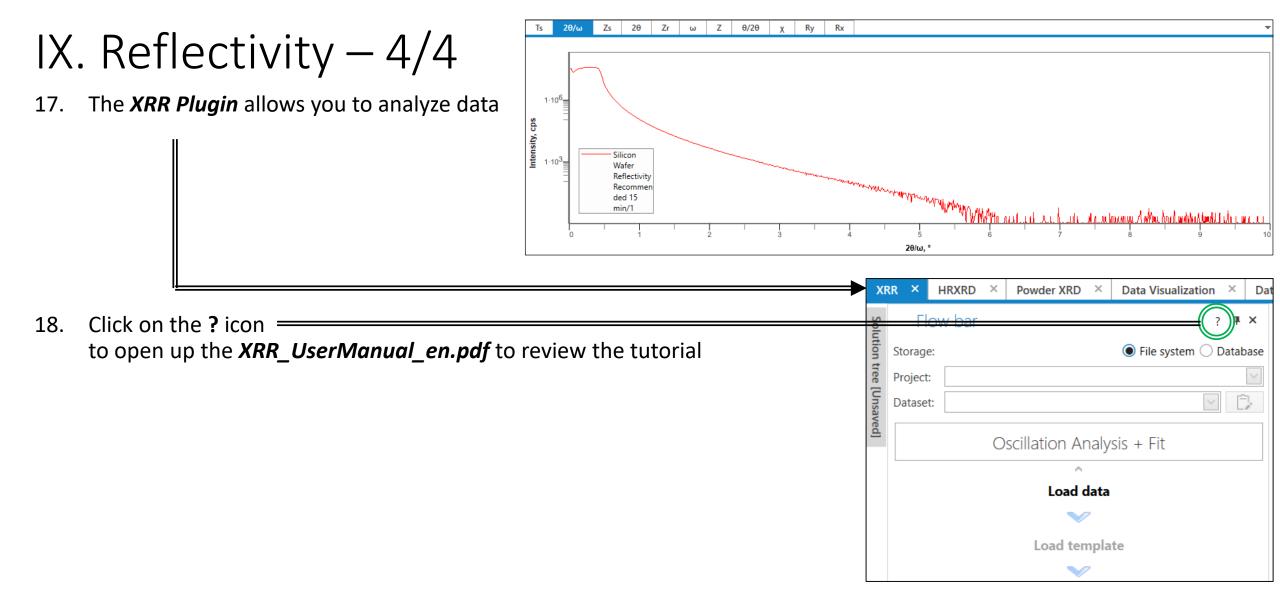
Optics attribute:

User settings


Run


System settings Registration date:

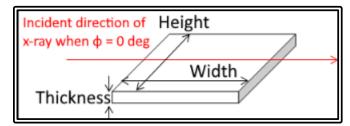
Incident monochromator: None


Slit

- 4. Left-click on **Optics Alignment (PB)**
- 5. Confirm the following are selected:
  - Optical settings  $\rightarrow$  Use default optics
  - Alignment conditions  $\rightarrow$  Full
  - Registration destination  $\rightarrow$  User settings
- 6. Click **Run** = and then **OK** when completed






| <b> X</b><br>13.<br>14.<br>15. | . Reflectivity – 3<br>Input your desired <i>File name</i> an<br>Select <i>Customize conditions</i> if y<br>You may include different scan | d <i>File</i>     | locatio                                                                                                      | <b>n</b> here                                      |                                                            |                                                                                        |                                                                                                               | Run recom     Save measu     Hie name:     Sample name:     Memo:     Calculated scan o | ured data                                                         | ence 🔾 Custon                                                         | Nize conditions    |                                          | ncel |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|------------------------------------------|------|
| 13.                            | parameters such as the <b>Step</b> and <b>Speed</b> for different <b>2</b> θ ranges                                                       | Request           | ed scan duration<br>ed scan duration<br>ual exchange s<br>: Soller slit: Sc<br>limiting slit: 10<br>nditions | on, min:                                           | 5. C Retu                                                  |                                                                                        |                                                                                                               |                                                                                         | rement                                                            | Read Cur                                                              | rrent Optics       | (                                        |      |
| 13.                            | Click <b>OK</b> then click <b>Run</b>                                                                                                     | Scan mix<br>Exec. | de <u>θD(contin</u><br>Scan Axis<br>2θ/ω<br>2θ/ω<br>2θ/ω<br>2θ/ω<br>2θ/ω                                     | Range Absolute Absolute Absolute Absolute Absolute | Start, °<br>0.0000<br>5.0000<br>0.0000<br>0.0000<br>0.0000 | Stop, °         5.0000         10.0000         10.0000         10.0000         10.0000 | Step, °           0.0100           0.0100           0.0100           0.0100           0.0100           0.0100 | Speed, °/min<br>12.000<br>6.000<br>0.667<br>0.667<br>0.667                              | Incident Slit,<br>mm<br>0.050<br>0.050<br>0.050<br>0.050<br>0.050 | Receiving Slit<br>#1, mm<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250 | 0.300 V<br>0.300 V | Auto<br>Auto<br>Auto<br>Auto<br>duration |      |



### Package Activities X. Pole Figure -1/5▲ General 🖤 General (BB) General (PB) Reflection SAXS • This sequence will perform a Pole Figure using Parallel Beam optics Micro Area Pole Figure Residual Stress 1. Select the *Pole Figure* package under *XRD Measurement > Package Activities* Flow Editor ? # X A 24 2. Drag the *Pole Figure* package into the *Flow Editor* in *Sequence* Sequence Drop activities here 3. Right-click on **Optics Alignment (BB)** and Sample Alignment (Powder, Bulk) and select "Delete" 📮 Pole Figure XRD Measurement XRR × HRXRD Powd × $\bigtriangledown$ Activities ? # × -In Optics Alignment (BB) ? Q Part Activities Find **Optics Alignment (PB)** and 4. Sample Alignment (Powder, Bulk) ? Alignment Activity Sample Alignment (Thin Film) under Part Activities + Sample Alignment (Powder, Bulk) A Pole Figure Measurement 0? Sample Alignment (Thin Film) 5. Drag **Optics Alignment (PB)** and **Sample Alignment (Thin Film)** 👛 Pole Figure above the *Pole Figure Measurement* Optics Alignment (PB) ? A Pole Figure Measurement 0 6. If **Optics Alignment (PB)** and **Sample Alignment (Thin Film)** were previously performed, then skip to Step 14 🚊 Pole Figure Detics Alignment (PB) ? Left-click on **Optics Alignment (PB)** 7. ? Sample Alignment (Thin Film) A Pole Figure Measurement 0?

# X. Pole Figure – 2/5

- 8. Confirm the following are selected:
  - Optical settings  $\rightarrow$  Use default optics
  - Alignment conditions → Full
  - Registration destination  $\rightarrow$  User settings
- 9. Click *Run* and then *OK* when completed
- 10. Left-click on Sample Alignment (Thin Film)
- 11. Input your *Sample Info* per the dimensions

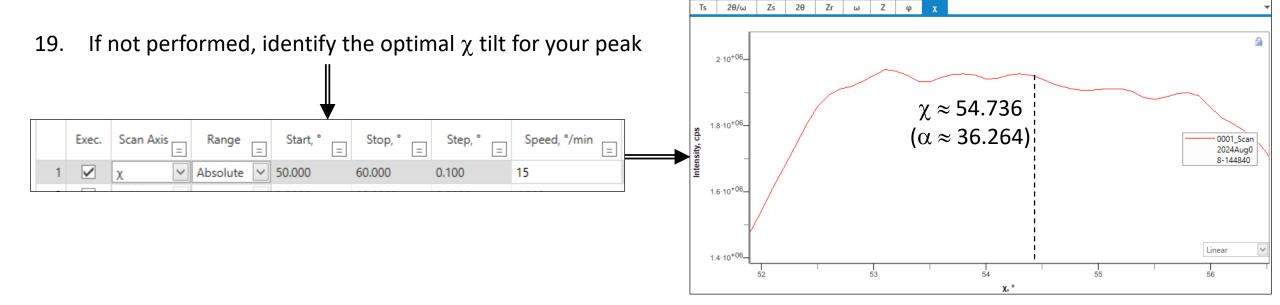


- 12. Confirm the following are checked:
  - Direct beam half cut alignment
  - Surface normal alignment
  - Put a sample when the sample alignment starts

|           |                                                                               |                          | Optics Alignment (PB)              | (?) ×  |  |  |  |
|-----------|-------------------------------------------------------------------------------|--------------------------|------------------------------------|--------|--|--|--|
|           |                                                                               | Optical settings         |                                    |        |  |  |  |
|           |                                                                               | Incident monochromato    | r: None                            | ~      |  |  |  |
| IŦ        |                                                                               | Receiving optics:        | Slit                               | ~      |  |  |  |
|           |                                                                               | Run alignment for ve     | rtical transmission geometry       |        |  |  |  |
|           |                                                                               | Use default optics       | Customize optics Customize         |        |  |  |  |
|           | XRD Measurement ×                                                             | Alignment conditions     |                                    |        |  |  |  |
| gs 🛛      | Flow sequence completed.                                                      | Full      Quick (Only r  | Quick (Only receiving optics)      |        |  |  |  |
|           |                                                                               | Registration destination |                                    |        |  |  |  |
|           | ОК                                                                            | Optics attribute: PB     |                                    |        |  |  |  |
|           |                                                                               | User settings            |                                    | ∨ New  |  |  |  |
|           |                                                                               | ○ System settings        |                                    |        |  |  |  |
|           |                                                                               | Registration date:       |                                    |        |  |  |  |
|           |                                                                               |                          | 01                                 |        |  |  |  |
| Film) =   | ·····                                                                         | Run                      | OK                                 | Cancel |  |  |  |
|           |                                                                               |                          | 📮 Pole Figure                      | 0      |  |  |  |
|           |                                                                               |                          |                                    | 0      |  |  |  |
| nsions —  |                                                                               |                          | -la Optics Alignment (PB)          | (?)    |  |  |  |
|           |                                                                               |                          |                                    | ?      |  |  |  |
| Г         |                                                                               |                          | $\bigtriangledown$                 |        |  |  |  |
|           | Sample Alignment (Thin Film)                                                  | ? ×                      | <u> </u> ∧ Pole Figure Measurement | • ?    |  |  |  |
|           | Sample information                                                            |                          | $\bigtriangledown$                 |        |  |  |  |
|           | Thickness, mm 0.5 Width, mm 5.0 Height, mm 5.0                                | D                        |                                    |        |  |  |  |
|           | Alignment conditions                                                          |                          |                                    |        |  |  |  |
|           | Attachment and sample plate: RxRy attachment head + 4-inch wafer sample plate | ate 🗸                    |                                    |        |  |  |  |
|           | ✓ Direct beam half cut alignment ✓ Surface normal alignment                   |                          |                                    |        |  |  |  |
|           | Alignment criteria: Standard                                                  | ~                        |                                    |        |  |  |  |
|           | Surface density: High (> 4.0 g/cm3)                                           |                          |                                    |        |  |  |  |
| nt starts | ✓ Put a sample when the sample alignment starts                               |                          |                                    |        |  |  |  |



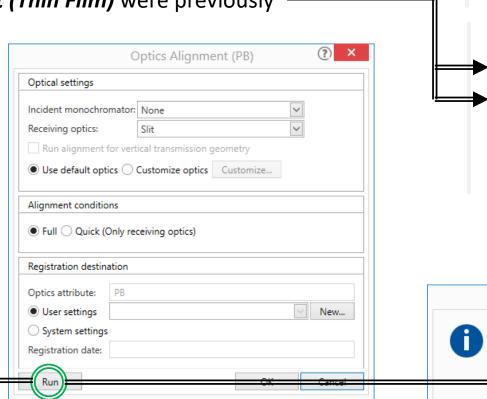
17. Choose to *Run recommended sequence* or *Customize conditions* 

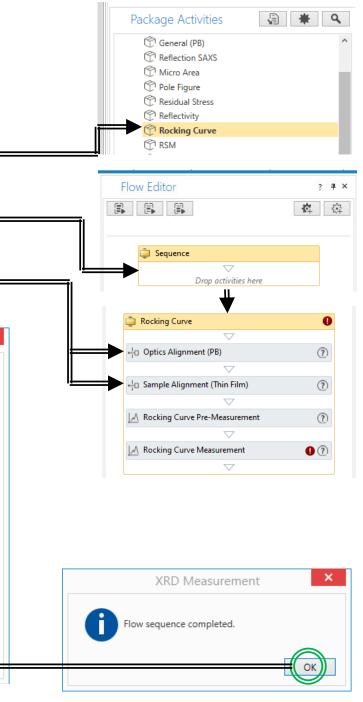

### X. Pole Figure -4/5

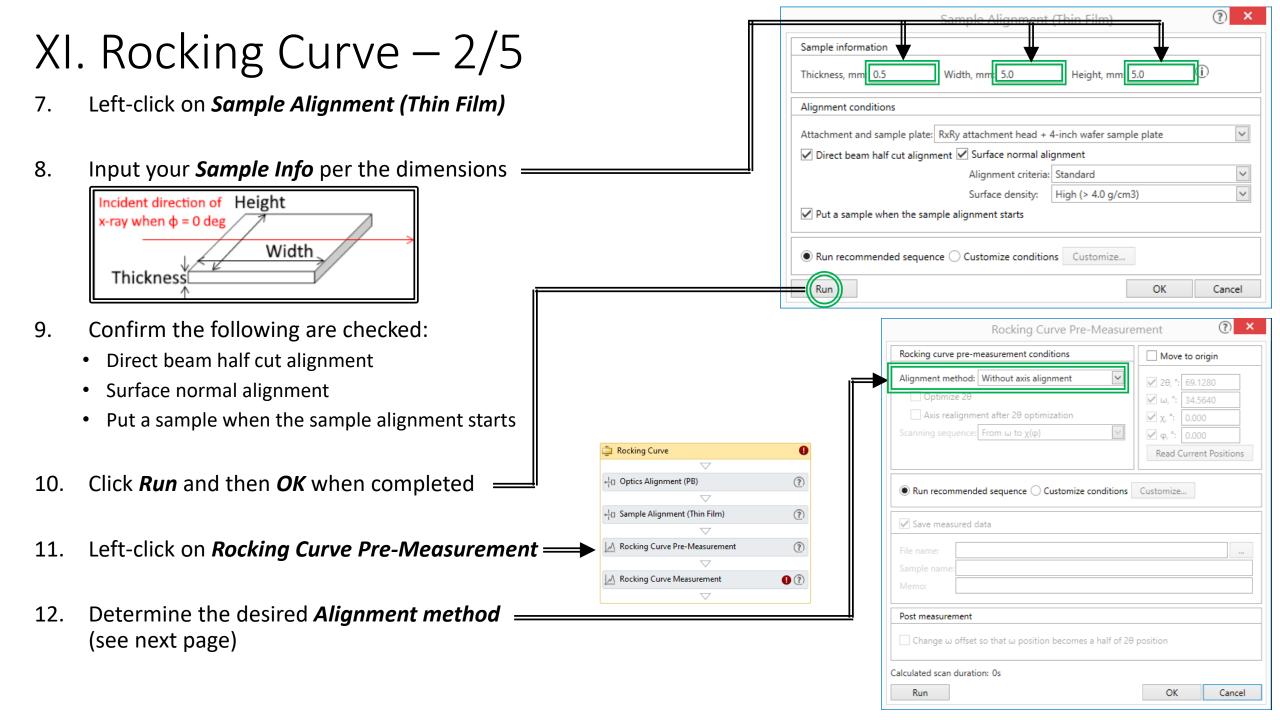
- 18. Depending on your *Step* chosen, be aware that it may not be sufficient so choose the following carefully for  $\alpha$  scan axes!
  - Start
  - Stop
  - Step
  - Speed

### (Note: Will the peaks appear for $\alpha$ if arbitrarily chosen?)

| 2θ angle, ° (Tran | smission):   | 28.4664     | 2θ angle, ° (Refl | ection): 2 | 8.4664    | γ axis oscil | lation: | Not run          | $\sim$ | ·                        |                  |        |           |     |
|-------------------|--------------|-------------|-------------------|------------|-----------|--------------|---------|------------------|--------|--------------------------|------------------|--------|-----------|-----|
| Geometry          | Step<br>Axis | Scan Moo    | de Range          | Star       | t, ° Stop | ° Ste        | p, °    | Incident<br>Slit |        | Receiving<br>Slit #1, mm | Recei<br>Slit #2 | -      | Attenua   | tor |
|                   |              | 0D(step)    | Absolute          | 0          | 15        | 5            |         | 0.1 mm           |        |                          | 9.900            |        |           |     |
| Reflection        | α            | 0D(step)    | Absolute          | 15.264     | 55.264    | 5.000        |         | 1/6°             | $\sim$ | 10.000                   | 9.900            | $\sim$ | Open      |     |
| Scan Axis         | Sc           | an Mode     | Range             |            | Start, °  |              | Stop,   | •                |        | Step, °                  |                  | Spe    | ed, °/min |     |
| β                 | 0D(cor       | ntinuous) 🗸 | Absolute          | 0.0        | 00        | 360.00       | 0       |                  | 5.00   | 0                        | 20               | 00.00  |           |     |


Remember that  $\alpha$  = 90° -  $\chi$ 



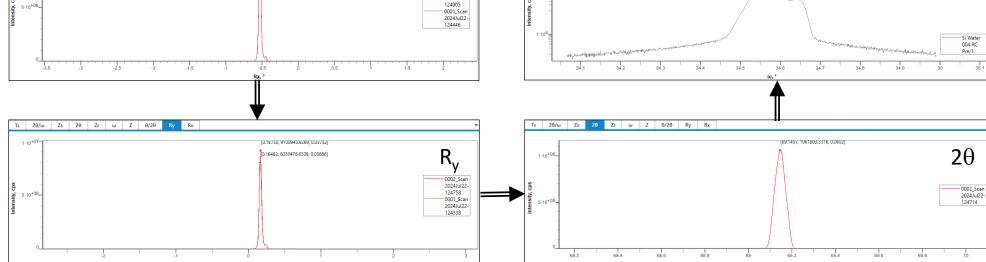


### X. Pole Figure -5/5Background measurement conditions If Background measurements ==== 18. Background #1 Background #2 were selected, determine Step Receiving Receiving Receiving Receiving Step, ° 20 Angle, ° 20 Anale. ° Geometry the desired conditions Axis Slit #1, mm Slit #2, mm Slit #1, mm Slit #2, mm 5.000 25.7480 10.000 9.900 ✓ 31.7480 10.000 9.900 Reflection α Background Data Acquisition Method Scan Mode Start. ° Stop. ° Step. ° Duration, s Scan Axis Range Fixed time Absolute 1.5 1 point ( $\beta$ = Minimum intensity) Input your desired *File name* and *File location* here — 20. Run recommended sequence O Customize conditions Customize... Save measured data 21. Click *Run* then *OK* when completed = Sample name: Memo: α:34.6 For training with Silicon: Do not Run β:89.6 TD Value : 330234 Calculated scan duration: 34min 15s 400000-OK Run Cancel 22. If the parameters were chosen XRD Measurement properly, you should eventually 300000see intensity peaks appear at Flow sequence completed. • the appropriate 200000- $\alpha$ and $\beta$ positions 100000-

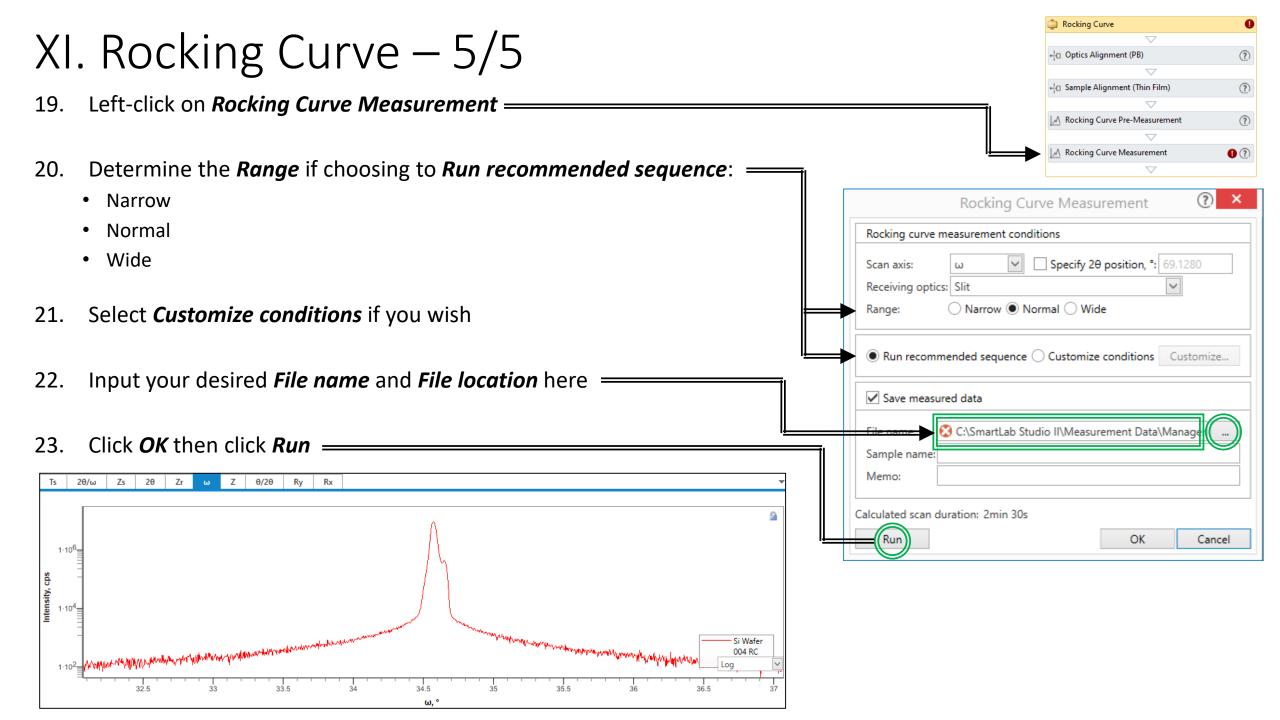
# XI. Rocking Curve – 1/5

- $\circ~$  This sequence will perform a Rocking Curve using Parallel Beam optics
- 1. Select the *Rocking Curve* package under *XRD Measurement > Package Activities*
- 2. Drag the *Rocking Curve* package into the *Flow Editor* in *Sequence*
- 3. If *Optics Alignment (PB)* and *Sample Alignment (Thin Film)* were previously performed, then skip to *Step 11*
- 4. Left-click on *Optics Alignment (PB)*
- 5. Confirm the following are selected:
  - Optical settings  $\rightarrow$  Use default optics
  - Alignment conditions → Full
  - Registration destination  $\rightarrow$  User settings
- 6. Click *Run* \_\_\_\_\_\_ and then *OK* when completed









## XI. Rocking Curve – 3/5

| Alignment Method         | Description                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Without alignment        | Drive each axis to the reflection position specified in the <b>Move origin</b> section. An additional alignment will not be performed.                                                                                                                                                                                                                                   |
| Quick axis alignment     | Drive each axis to the reflection position specified in the <b>Move origin</b> section, and align the $\omega$ and $\chi$ (or Rx) axes (for symmetric reflection) or $\varphi$ axis (for asymmetric reflection).                                                                                                                                                         |
| Recursive axis alignment | Drive each axis to the reflection position specific in the <b>Move origin</b> section, and perform the $\omega$ scan as driving the $\chi$ (or Rx) axis (for symmetric reflection) or $\varphi$ axis (for asymmetric reflection) step-by-step. Plot the peak intensity vs. the $\chi$ (or Rx) or $\varphi$ axis to the optimized position, then align the $\omega$ axis. |
| Standard axis alignment  | Drive each axis to the reflection position specified in the <b>Move origin</b> section, and perform the Rx, Ry scan to face the φ axis to the normal of the lattice plane.<br>Then, align the ω axis.                                                                                                                                                                    |
| Precise axis alignment   | Drive each axis to the reflection position specified in the <b>Move origin</b> section, and perform the $\omega$ scan at four positions ( $\varphi = 0^\circ$ , 180°, 90°, -90°) to face the $\varphi$ axis to the normal of the lattice plane. Then, align the $\omega$ (and $\chi$ ) axes.                                                                             |

| 13. | Depending on the <i>Alignment method</i> chosen, it will perform                                                              | Rocking Curve Pre-Measurement 📀 🗙                |                                        |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------|--|--|
|     | additional alignment – recommend <i>Quick axis alignment</i>                                                                  | Rocking curve pre-measurement conditions         | Move to origin                         |  |  |
|     |                                                                                                                               | Alignment method: Quick axis alignment           | ✓ 2θ, °: 69.1280                       |  |  |
| 14. | If available, also recommend performing:                                                                                      | ✓ Optimize 20                                    | 🗹 ω, °: 34.5640                        |  |  |
|     | • Optimize 20                                                                                                                 | Axis realignment after 2θ optimization           | ⊻ χ, °: 0.000                          |  |  |
|     | <ul> <li>Axis realignment after 2θ optimization</li> </ul>                                                                    | Scanning sequence: From $\omega$ to $\chi(\phi)$ | φ, °: 0.000     Read Current Positions |  |  |
| 15. | Before proceeding, check that your <b>Origin Position</b><br>is set to desired plane using <b>RS Viewer</b> before proceeding | Reset Nove Ates Send Area                        |                                        |  |  |
| 15. |                                                                                                                               | Reset Nove Ares Send Area                        |                                        |  |  |

### XI. Rocking Curve – 4/5 Run recommended sequence Customize conditions Customize... Save measured data Proceed to check the Post measurement setting = 16. • Change $\omega$ offset so that $\omega$ position becomes a half of 2 $\theta$ position Click on *Run* —— 17. Post measurement Change ω offset so that ω position becomes a half of 2θ position Calculated scan duration: 8min 6s Axes will be aligned per the chosen 18. OK Run Cancel Alignment method 2θ/ω Zs 2θ Zr ω Z θ/2θ Ry Ts 2θ/ω Zs 2θ Zr ω Z θ/2θ Ry Rx [-0.53361; 8995871.2738; 0.03762] R<sub>x</sub> [34,5640, 9260393,7252, 0.0365] ω 0002\_Scan 2024Jul22-124905 0001 Scar 2024Jul22-124446 1.104 - Si Wafe 004 RC Pre/1 we brankle CANA





### 9 Package Activities XII. Reciprocal Space Map (RSM) - 1/5General General (BB) General (PB) Reflection SAXS Micro Area This sequence will perform a Reciprocal Space Map or RSM using Parallel Beam optics Ο Pole Figure Residual Stress Select the **RSM** package under **XRD Measurement** > **Package Activities** 1. Reflectivity Rocking Curve RSM 🕅 2. Drag the **RSM** package into the **Flow Editor** in **Sequence** Flow Editor 3. If **Optics Alignment (PB)** and **Sample Alignment (Thin Film)** were previously performed, then skip to Step 11 Sequence Drop activities here ? × **Optics Alignment (PB)** 4. Left-click on *Optics Alignment (PB)* 👛 RSM Optical settings Incident monochromator: None Detics Alignment (PB) Receiving optics: Slit 5. Confirm the following are selected: 🕂 Sample Alignment (Thin Film) Run alignment for vertical transmission geometry • Optical settings $\rightarrow$ Use default optics Use default optics Customize optics Customize... A Rocking Curve Pre-Measurement Alignment conditions → Full Alianment conditions A RSM Measurement • Registration destination $\rightarrow$ User settings $\bigtriangledown$ Full Quick (Only receiving optics) Registration destination 6. Click **Run** PB XRD Measurement Optics attribute: New... and then **OK** when completed User settings O System settings Flow sequence completed. Registration date:

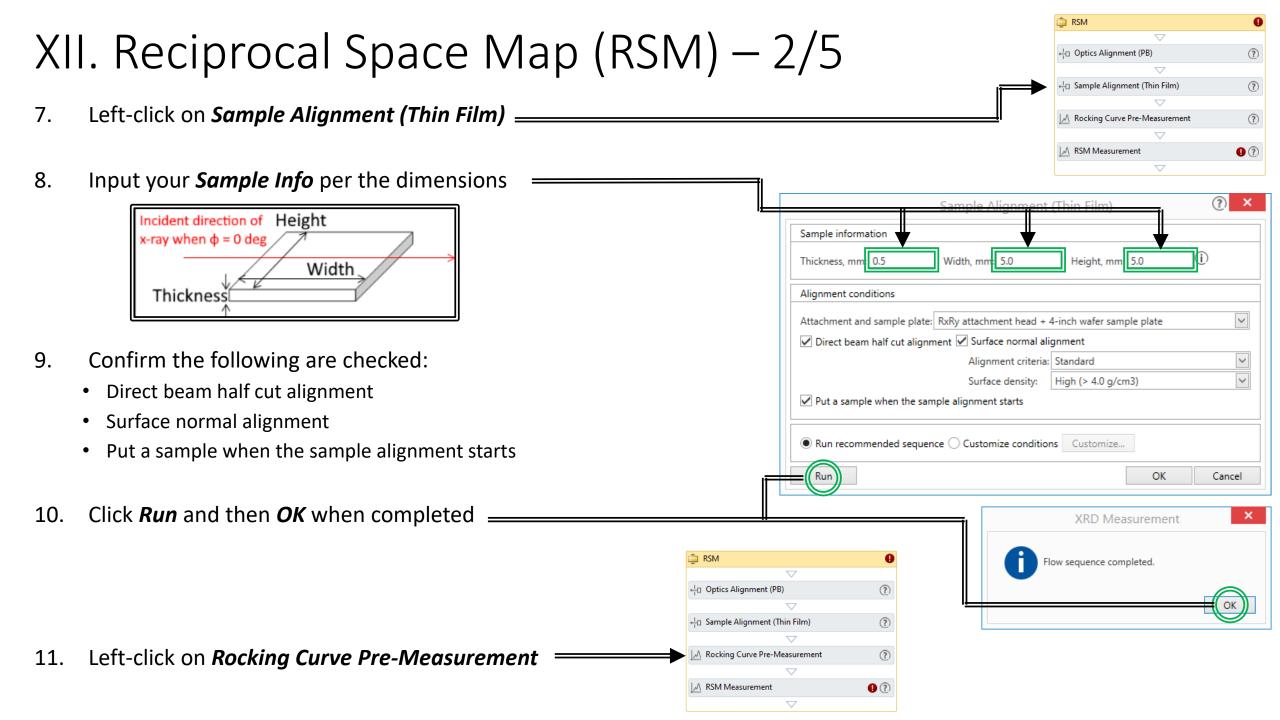
\*

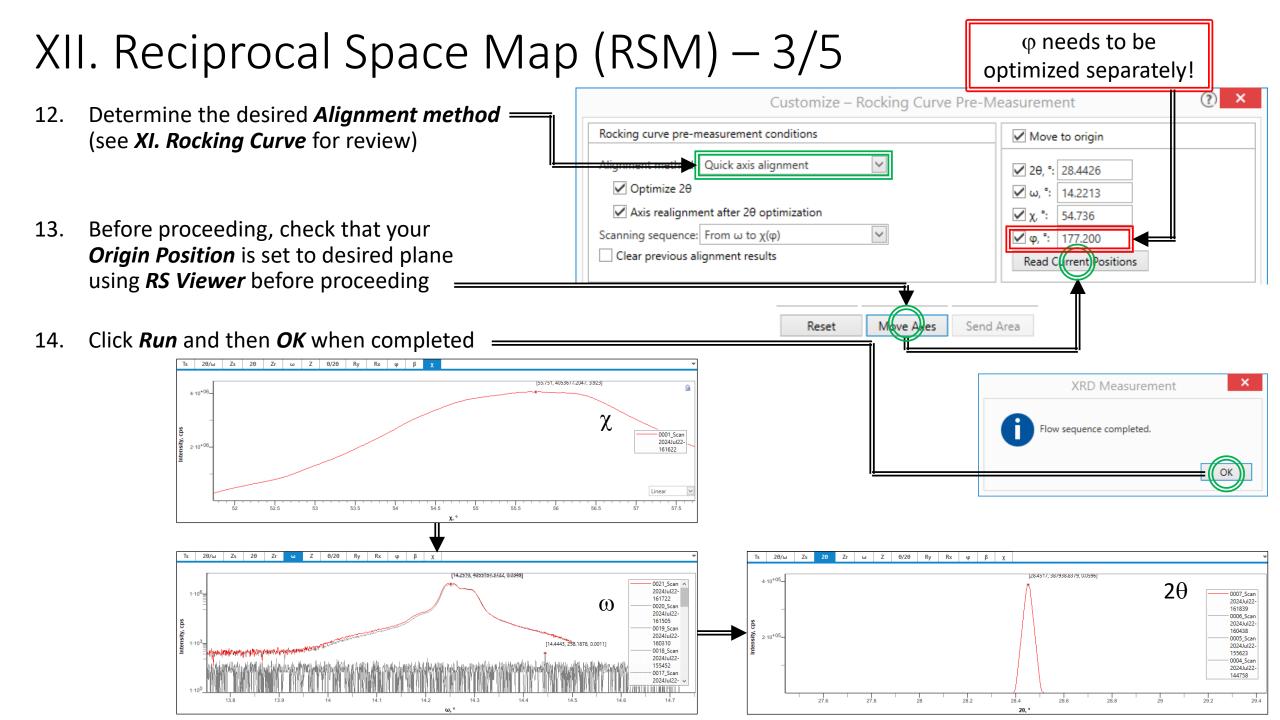
Q

? # X

**\*** 

0


?


?

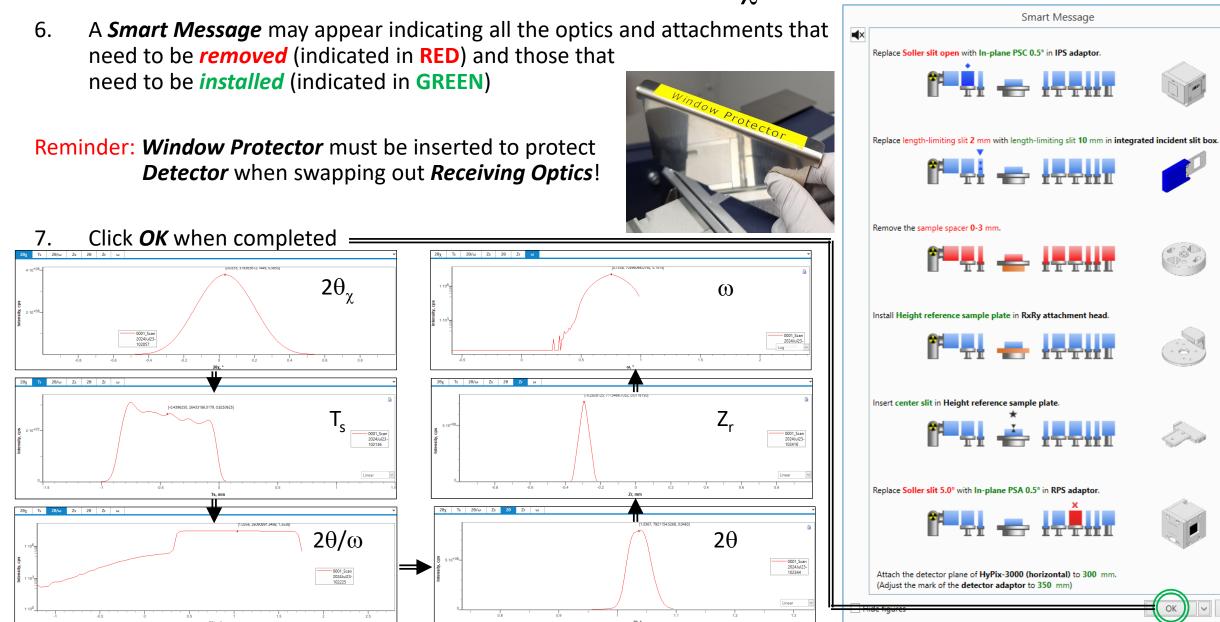
?

×

0

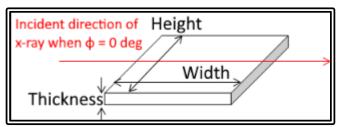





| XII. Reciprocal Space Map (RSN                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15. Left-click on <i>RSM Measurement</i>                                                                                                                                                                                                                                                                                                                                                                                      | -I Sample Alignment (Thin Film) ⑦<br>✓<br>M Rocking Curve Pre-Measurement ⑦<br>✓<br>M RSM Measurement <b>①</b> ⑦                                                                                                                                                                                                                                                                                                    |
| <ol> <li>Click on <i>Read Current Positions</i> to align axis</li></ol>                                                                                                                                                                                                                                                                                                                                                       | RSM Measurement                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>17. Use the <i>Run recommended sequence</i> or or click <i>Customize conditions</i></li> <li>18. Adjust the following parameters if desired: <ul> <li>Start</li> <li>Stop</li> <li>Step</li> <li>Speed</li> </ul> </li> </ul>                                                                                                                                                                                        | RSM measurement conditions $\checkmark$ Move to originDetector:HyPix-3000 (horizontal) $\checkmark$ Detector mode:OD(continuous) $\checkmark$ Data acquisition method: $\omega$ step, 2 $\theta/\omega$ scan $\checkmark$ Receiving optics:Slit $\checkmark$ Detector distance, mm:150 $\checkmark$ Range:Narrow $\textcircled{o}$ Normal $\bigcirc$ WideScan range simulationSample information:DBLaunch RS Viewer |
| Scan conditions       Incident slit, mm:     1.000       Receiving slit #1, mm:     1.000                                                                                                                                                                                                                                                                                                                                     | Run recommended sequence Customize conditions Customize                                                                                                                                                                                                                                                                                                                                                             |
| Step Axis       Scan Mode       Range       Start, °       Stop, °       Step, °       Number of Steps         ω        Relative       -3,0000       3.0000       0.5000       13         Scan Axis       Scan Mode       Range       Start, °       Stop, °       Step, °       Speed, °/min       Attenua         2θ/ω       0D(continuous)       Relative       -3,0000       3,0000       0.5000       100.000       Auto | ator                                                                                                                                                                                                                                                                                                                                                                                                                |

### XII. Reciprocal Space Map (RSM) – 5/5

| 19. Input your desired <i>File name</i> and <i>File location</i> here | Save measured data                               |
|-----------------------------------------------------------------------|--------------------------------------------------|
| 20. Click <i>Run</i> then <i>Ok</i> then OK when completed            | Sample name: Memo:                               |
| For training with Silicon: Do not Run                                 | Calculated scan duration: 7h 25min 25s OK Cancel |
| Τs 2θ/ω Zs 2θ Zr ω Z φ χ Set-1                                        | XRD Measurement     X                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                 |                                                  |


| <ul> <li>XIII. In-Plane Measureme</li> <li>This sequence will perform an In-Plane Measuremen</li> <li>Select the <i>In-Plane</i> package under <i>XRD Measurement</i></li> </ul> | It or $2\theta_{\chi}/\phi$ using Parallel Beam optics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Package Activities         Image: Activities      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Drag the <i>In-Plane</i> package into the <i>Flow Editor</i> in                                                                                                               | Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Image: Constraint of the second se |
| 3. Left-click on <i>Optics Alignment (In-Plane)</i>                                                                                                                              | Optics Alignment (In-Plane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Flow Editor ? # ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>4. Confirm the following are selected:</li> <li>• Optical settings → Use default optics</li></ul>                                                                       | Optical settings         Incident monochromator:       None         In-plane PSC:       In-plane PSC 0.5°         In-plane PSA:       In-plane PSA 0.5°         In-plane PSA:       In-plane PSA 0.5°         Image: Set the set of the | Gequence<br>Drop activities here<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5. Click <i>Run</i><br>and then <i>OK</i> when completed                                                                                                                         | <ul> <li>Full Quick (Only receiving optics)</li> <li>Registration destination</li> <li>Optics attribute: PB(In-plane)</li> <li>User settings</li> <li>User defined settings</li> <li>New</li> <li>System settings</li> <li>Registration date: 2024-07-10 12:58:06</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +□ Sample Alignment (In-Plane) ⑦<br>✓<br>M In-Plane Pre-Measurement ⑦<br>M In-Plane Measurement ⑦<br>✓<br>VRD Measurement ⑦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                  | Post alignment  Print out results  Run  OK  Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XRD Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 2/9$

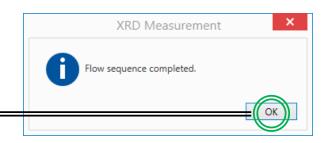


## XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 3/9$

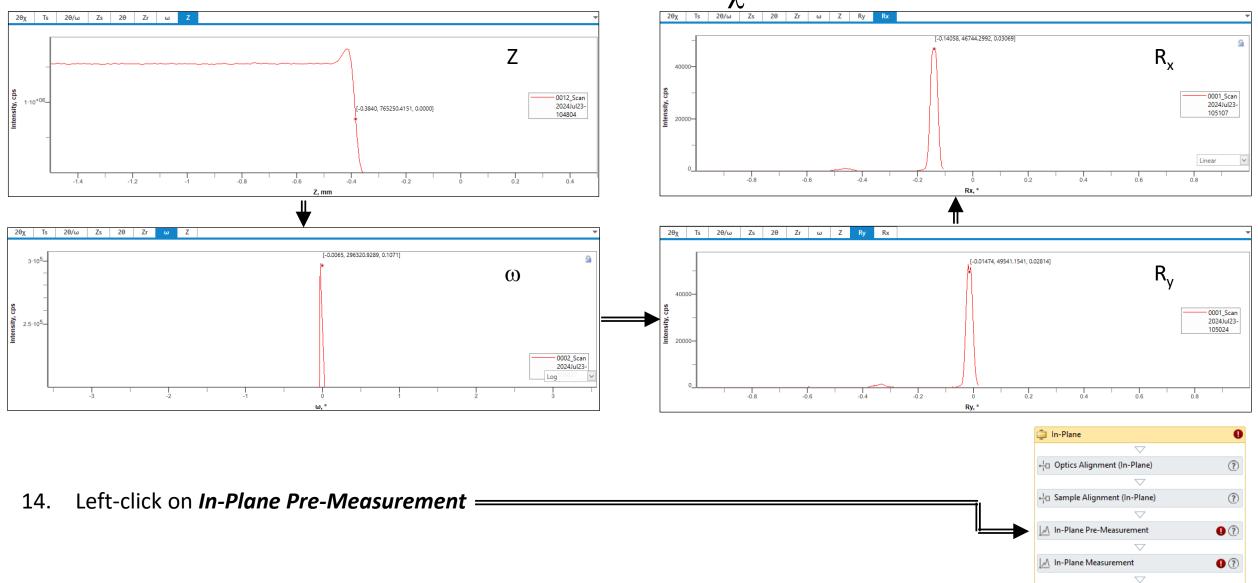
- 8. Left-click on *Sample Alignment (In-Plane)* to set *Sample Info*
- 9. Input your *Sample Info* per the dimensions



For training with Silicon: Thickness = 0.5 mm; Width & Height = 5 mm


- 10. Confirm the following are checked:
  - Direct beam half cut alignment
  - Surface normal alignment
  - Put a sample when the sample alignment starts

11. Click *Run* 


- 12. If *Sample Alignment (In-Plane)* fails, try changing surface density (e.g. High)
- 13. Wait for the *Flow sequence completed* prompt to continue by clicking *OK* ===

| -7.00 - 5.09                                                                |                               |        |
|-----------------------------------------------------------------------------|-------------------------------|--------|
| $D_{\gamma}/\Psi = 3/9$                                                     | $\Box$                        |        |
| $\chi^{2}$ $\Gamma$ $\gamma$                                                | Optics Alignment (In-Plane)   | (?)    |
|                                                                             | $\Box$                        |        |
|                                                                             | + Sample Alignment (In-Plane) | ?      |
|                                                                             | $\bigtriangledown$            |        |
|                                                                             | M In-Plane Pre-Measurement    | • ?    |
|                                                                             | $\bigtriangledown$            |        |
|                                                                             | M In-Plane Measurement        | •      |
|                                                                             | $\bigtriangledown$            |        |
| Sample Alignment (In-Pl                                                     | lane)                         | (?) ×  |
| Sample information                                                          |                               |        |
| Thickness, mm 0.5 Width, mm 5.0 Hei                                         | ght, mm 5.0                   |        |
| Alignment conditions                                                        |                               |        |
| Attachment and sample plate: RxRy attachment head + 4-inch w                | afer sample plate             | $\sim$ |
| Direct beam half cut alignment Surface normal alignmen                      | t                             |        |
| Alignment criteria: Standa                                                  | ard                           | $\sim$ |
| Surface density: High (                                                     | (> 4.0 g/cm3)                 | $\sim$ |
| Run recommended sequence      Customize conditions     Customize conditions | stomize                       |        |

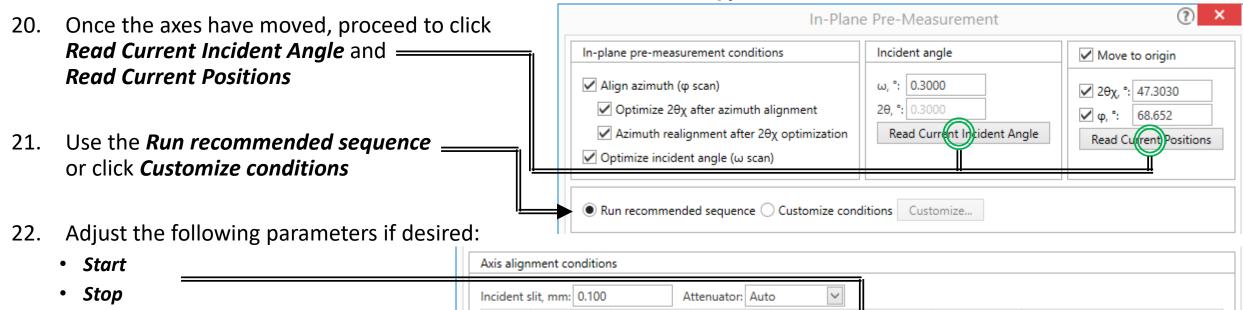
📥 In Diana



### XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 4/9$



# XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 5/9$


- 15. Recommend the following is checked:
  - Align azimuth (φ scan)
  - Optimize  $2\theta_{\chi}$  after azimuth alignment
  - Azimuth realignment after  $2\theta_{\chi}$  optimization
  - Optimize incident angle (ω scan)

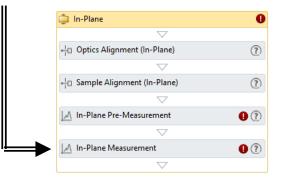
| In-Plane                                                                                                                                                                                                           | e Pre-Measurement                                                              | (?) ×                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| In-plane pre-measurement conditions         Image: Align azimuth (φ scan)         Optimize 2θχ after azimuth alignment         Azimuth realignment after 2θχ optimization         Optimize incident angle (ω scan) | Incident angle<br>ω, °: 0.3000<br>2θ, °: 0.3000<br>Read Current Incident Angle | <ul> <li>✓ Move to origin</li> <li>✓ 2θχ, °: 47.3030</li> <li>✓ φ, °: 68.652</li> <li>Read Current Positions</li> </ul> |

### • Note: The following is for training purposes to learn how to move goniometer axes for In-Plane

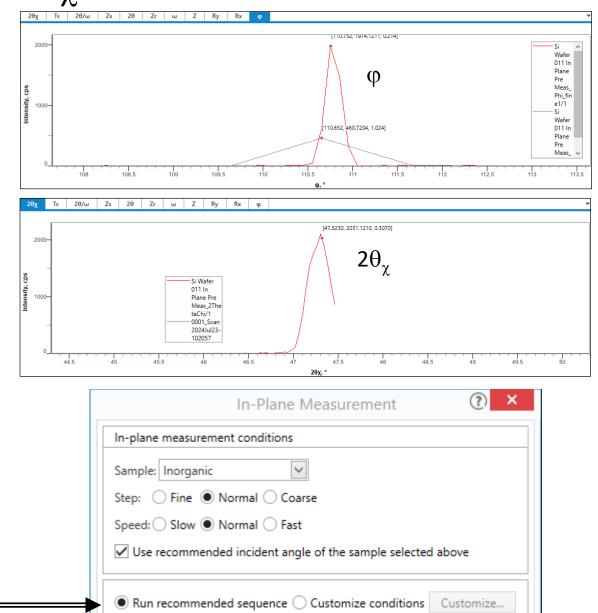
| 16. | Open the <b>RS Viewer</b> and find the Si (2 -2 0) plane —                       | <del></del> [ | Measurement                                            |                                           |                     |                  | ?         |
|-----|----------------------------------------------------------------------------------|---------------|--------------------------------------------------------|-------------------------------------------|---------------------|------------------|-----------|
| 10. |                                                                                  |               | Geometry: In-plane<br>X-ray target: Cu-Kα <sub>1</sub> | Wavelength, nm: 0.15405                   | 593                 |                  |           |
|     |                                                                                  |               | Reflection information                                 |                                           |                     |                  | ?         |
|     |                                                                                  |               | Layer: Si(Sub)                                         |                                           |                     |                  |           |
|     |                                                                                  |               | Origin: 2 -2 0                                         | Min.  F (rel.) to show, %: 0 🔘            | Highlighted: 2 -2 0 | Select           | Clear     |
|     |                                                                                  | П             | 20B:47.30  F :72.10  F  <sup>2</sup> :51               | 197.73 Incident angle: 9.9522E-16 Reflect |                     |                  |           |
| 17  |                                                                                  |               |                                                        |                                           | Scan type:          | ω step, 2θ/ω sca | in 🗸      |
| 17. | 17. Remember to select <i>In-plane</i> for Geometry                              | И             |                                                        | Origin                                    | Abs/Rel             | Start            | Stop      |
|     |                                                                                  |               | ω,°: 0.0000 🗘 —                                        |                                           | Relative 🗸          | 0.0000 🗘         | 0.0000 🗘  |
|     |                                                                                  |               | 2θ/ω,°: 0.0000 🗘                                       |                                           | Relative 🗸          | 0.0000 🗘         | 0.0000 🗘  |
| 18. | Click on <i>Move Axes</i>                                                        |               | χ°: 0.0000 🗘                                           | l                                         | Relative 🗸          | 0.0000 🗘         | 0.0000 🗘  |
|     |                                                                                  |               | φ,°: 68.6515 💭                                         | II                                        | Relative 🗸          | -7.5000 🗘        | 7.5000 🗘  |
|     |                                                                                  |               | 2θχ,°: 47.3030 🗘                                       |                                           | Relative 🗸          | -150000          | 15.0000 🗘 |
| 19. | The <i>Goniometer</i> will now reposition the axes per the values described here |               |                                                        | SF                                        | how area Reset      | Move Axes        | Send Area |
|     |                                                                                  |               |                                                        |                                           |                     |                  |           |

# XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 6/9$




• Step

Speed


- Step. ° Speed, °/min Peak Search Method Scan Axis Start. ° Stop. ° Exec. Range  $\checkmark$ φ (Coarse) Relative -50.000 50.000 1.000 180.00 Maximum intensity -3.000 Sequential center of gravity  $\sim$ φ (Fine) Relative 3.000 0.100 10.00  $\sim$ 2θχ Relative -3.0000 3.0000 0.040 5.000 Sequential center of gravity  $\sim$ 0.0000 Maximum intensity 1.0000 ω Absolute 1.0000 0.0200

## XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 7/9$

- 20. Once completed, the optimal  $\phi$  and  $2\theta_{\chi}$  parameters should be determined
- 21. If the parameters are not clearly optimized, check if the search is wide enough or if the initial parameters were appropriate
- 22. Left-click on In-Plane Measurement



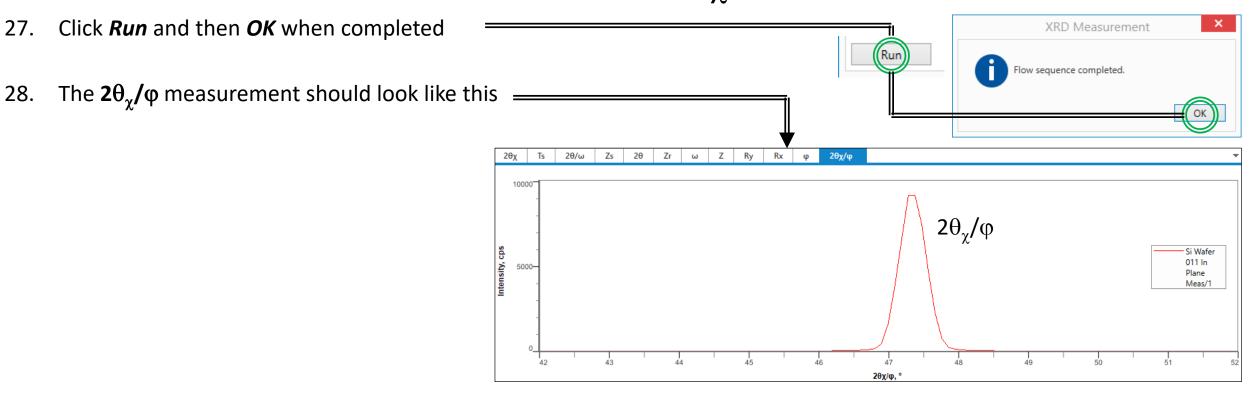
23. Use the *Run recommended sequence* or click *Customize conditions* 

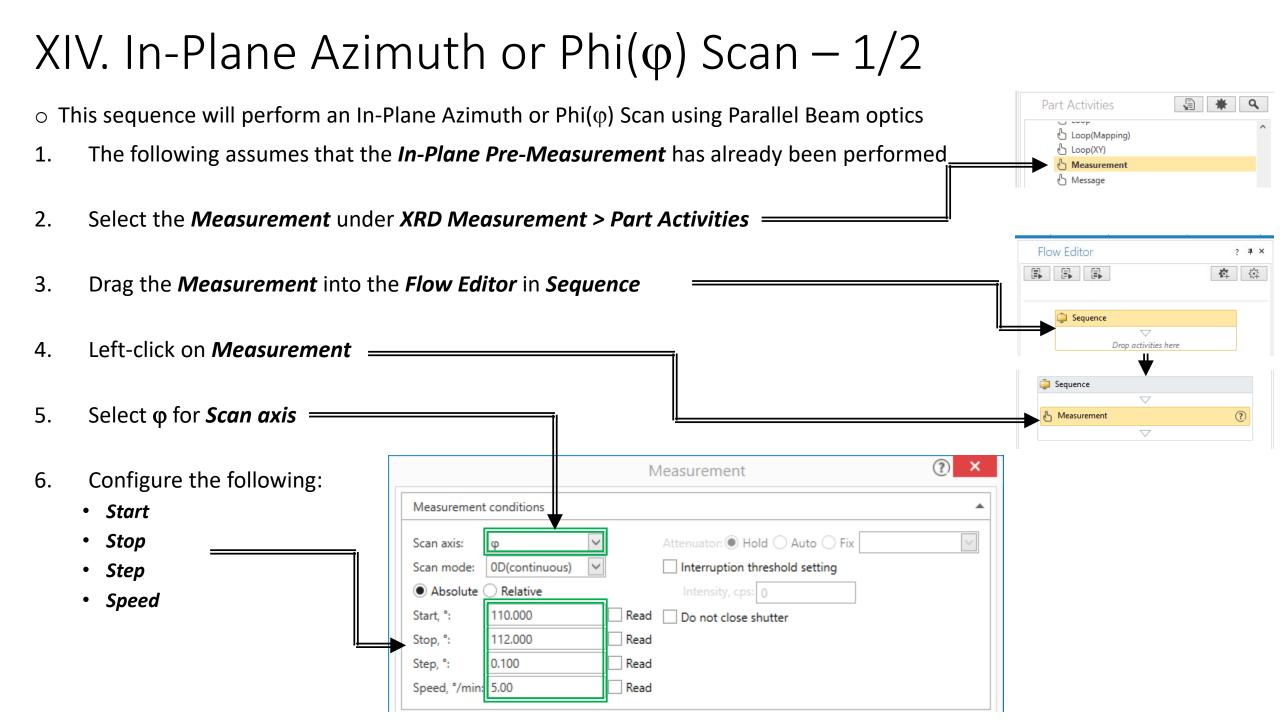


## XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 8/9$

Memo:

24. Click on **Read Current Positions** so that both the  $2\theta\chi$  and  $\phi$  are updated here if **Move to origin** is checked


- 25. Adjust the following parameters if desired:
  - Start
  - Stop
  - Step
  - Speed


For training with Silicon: See example =

26. Input your desired *File name* and *File location* here

| Gabiol                                                      | mize - In-Pl       | ane Measur          | ement                 |                                   | ? ×                |
|-------------------------------------------------------------|--------------------|---------------------|-----------------------|-----------------------------------|--------------------|
| In-plane measurement conditions                             | Set inci           | dent angle          |                       | Move to origin                    |                    |
| Sample: Inorganic                                           | ω, °: 0.30         | 00                  | V                     | 2θχ, °: 0.0000                    |                    |
| Step: OFine ONormal OCoarse                                 | 20, °: 0.30        | 00                  | ~                     | ⊈φ, °: 0.000                      |                    |
| Speed: 🔵 Slow 🖲 Normal 🔵 Fast                               | Read Cu            | rrent Incident A    | ngle                  | Read Current Posi                 | tions              |
| Use recommended incident angle of the sample selected above |                    |                     |                       |                                   |                    |
| Manual exchange slit conditions                             |                    |                     |                       |                                   |                    |
| In-plane PSC: In-plane PSC 0.5°                             | ✓ In-plane         | PSA: In-plane       | PSA 0.5°              | ~                                 |                    |
| Length-limiting slit: 10 mm                                 | $\sim$             | F                   | Read Current (        | Optics                            |                    |
| Scan conditions                                             |                    |                     |                       |                                   |                    |
|                                                             |                    |                     |                       |                                   |                    |
| Incident slit, mm: 0.100                                    |                    | <b>a</b> . <b>a</b> | <b>C</b> 1 <b>C</b> 1 |                                   |                    |
| Scan Axis Scan Mode Range                                   | Start, °           | Stop, °             | Step, °               | Speed, °/min                      | Attenuator         |
|                                                             | Start, °<br>42.000 | Stop, °<br>52.000   | Step, °<br>0.096      | Speed, °/min<br>5.00              | Attenuator<br>Auto |
| Scan Axis Scan Mode Range                                   |                    | -                   | 1.5                   | 5.00                              |                    |
| Scan Axis Scan Mode Range                                   |                    | 52.000              | 1.5                   | 5.00<br>Calculated                | Auto 🗸             |
| Scan Axis Scan Mode Range                                   | 42.000             | 52.000              | 0.096<br>Recommended  | 5.00<br>Calculated<br>d Values OK | Auto               |

# XIII. In-Plane Measurement or $2\theta_{\chi}/\phi - 9/9$





# XIV. In-Plane Azimuth or Phi( $\phi$ ) Scan – 2/2

- Input your desired *File name* and *File location* here
- 8. Click *Run* and then *OK* when completed

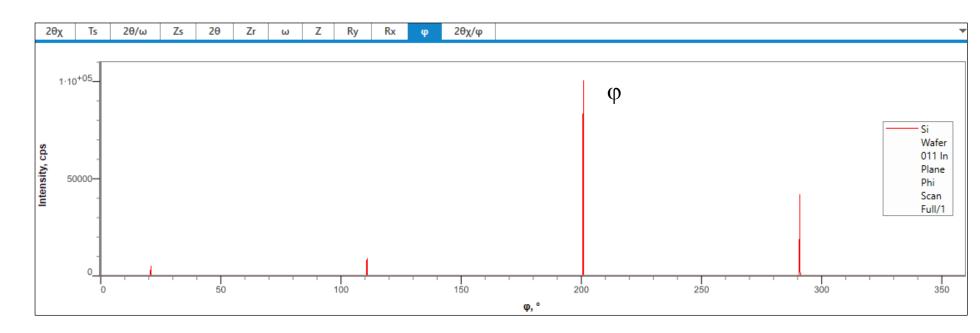
Save measured data

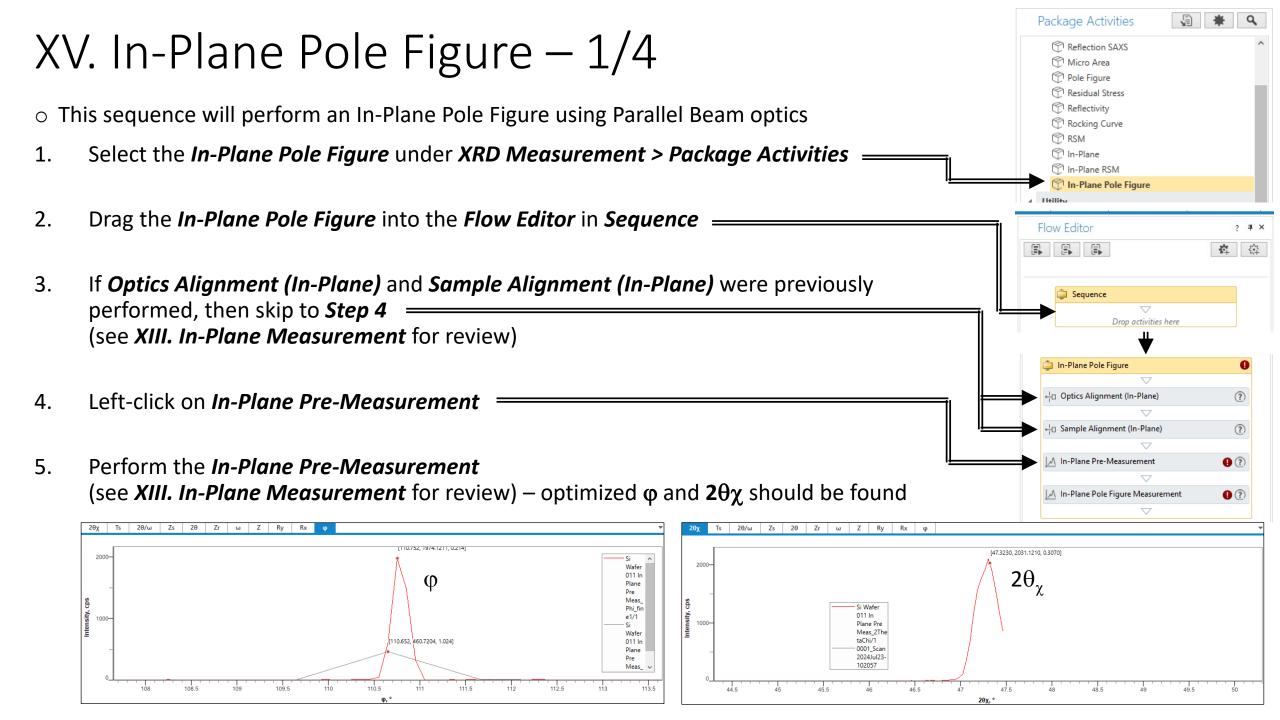
Post measurement

Run
OK
Cancel

XRD Measurement

XRD Measurement


XRD Measurement


XRD Measurement

XRD Measurement

Kun
Flow sequence completed.

 If the parameters were chosen properly, you should eventually see a series of peaks appear at the appropriate φ positions





| $\mathbf{N}$ | In-Plane Pole Figure                                | 0                                                           |                                    |          |
|--------------|-----------------------------------------------------|-------------------------------------------------------------|------------------------------------|----------|
| X١           | + Optics Alignment (In-Plane)                       | (?)                                                         |                                    |          |
|              | /. In-Plane Pole Figu                               | $\nabla$                                                    | C                                  |          |
|              |                                                     |                                                             | +¦_ Sample Alignment (In-Plane)    | (?)      |
| 6.           | Left click In-Plane Pole Figure Measurer            | nent <u> </u>                                               |                                    |          |
|              |                                                     |                                                             | M In-Plane Pre-Measurement         | •        |
|              |                                                     |                                                             | In-Plane Pole Figure Measurement   | •        |
| 7.           | Remember to input the following param               | eters!                                                      |                                    |          |
|              | • Crystal system (i.e. Cubic)                       | In-Flane Pole Figure Measurement                            | <                                  |          |
|              | • <i>Index</i> (i.e. 2 -2 0)                        | Sample information                                          |                                    |          |
|              | • <i>Measurement angle</i> (i.e. $2\theta_{\chi}$ ) | Thickness, mm: 0.50000 Cystal system:                       | ]                                  |          |
|              |                                                     | L near absorption coefficient, 1/cm: 0.000                  |                                    |          |
|              |                                                     | In-plane pole figure measurement conditions                 |                                    |          |
|              |                                                     | h I Background Not run                                      |                                    |          |
| 8.           | Choose if any                                       | Index: 2 -2 0 Measurement angle, 47.3235                    |                                    |          |
| •            | Background measurements —                           |                                                             |                                    |          |
|              |                                                     | Step: Fine Standard Coarse                                  |                                    |          |
|              | will be run if desired                              | Speed: Slow Standard Fast                                   |                                    |          |
|              |                                                     | ······································                      |                                    |          |
|              |                                                     | Run recommended sequence      Customize conditions          | stomize                            |          |
|              |                                                     | Save measured data                                          |                                    |          |
| 9.           | Choose to Run recommended sequence                  |                                                             | ( 011 DL DL F                      |          |
|              | or <b>Customize conditions</b>                      | File name: anager\Silicon Water Training Manual Scans\Si Wa | ater UTT In Plane Pole Figure.rasx | <u> </u> |
|              |                                                     | Sample name:                                                |                                    |          |
|              |                                                     | Memo:                                                       |                                    |          |
|              |                                                     |                                                             |                                    |          |

### XV. In-Plane Pole Figure – 3/4

- 10. Depending on your **Step** chosen, be aware that it may not be sufficient so choose the following carefully for  $\alpha$  scan axes!
  - Start
  - Stop
  - Step
  - Speed

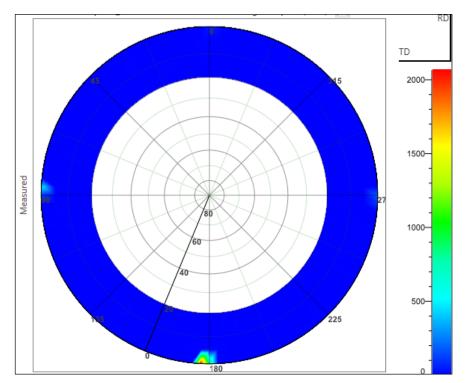
#### (Note: Will the peaks appear for $\alpha$ and $\beta$ if arbitrarily chosen?)

#### 11. If *Background measurements* were selected, determine the desired conditions

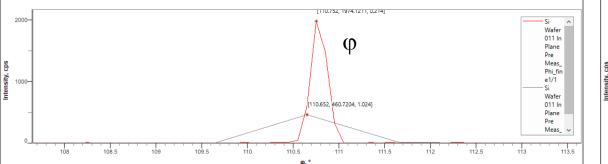
#### Background measurement conditions Background #1 Background #2 Step Receiving Receiving Receiving Receiving Geometry Step, ° 20 Angle, ° 20 Angle, ° Slit #2, mm Slit #1, mm Slit #2, mm Axis Slit #1, mm Reflection 5.000 25,7480 10.000 9.900 ✓ 31.7480 10.000 9.900 α Scan Axis Background Data Acquisition Method Scan Mode Start, ° Stop, ° Step, ° Duration, s Range 1 point (β = Minimum intensity) ✓ Fixed time Absolute 1.5

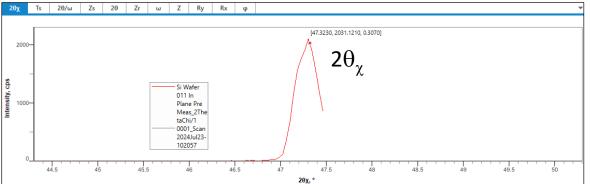
#### Data measurement conditions

| Minimum ω a      | ngle, °: | 0.5000       | Receiving | slit #1, mm: | 1.000   | Attenuator: | Auto         |
|------------------|----------|--------------|-----------|--------------|---------|-------------|--------------|
| Incident slit, m | im:      | 1.000        | Receiving | slit #2, mm: | 2.100   | $\sim$      |              |
| Scan Axis        |          | Scan Mode    | Range     | Start, °     | Stop, ° | ' Step °    | Speed, °/min |
| α                | 0D(st    | ep)          | Absolute  | 0.00         | 20.00   | 5.00        |              |
| β                | 0D(co    | ontinuous) 🗸 | Absolute  | 0.000        | 360.000 | 3.000       | 150.000      |


#### Remember that $\alpha = \chi$ for in-plane!

### XV. In-Plane Pole Figure -4/4


| 12. | Input your desired <i>File name</i> and <i>File location</i> here —————————————————————————————————— | Save measured data                                                          |
|-----|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|     |                                                                                                      | File name:                                                                  |
| 13. | Click <i>Run</i> then <i>OK</i> when completed                                                       | Sample name:                                                                |
|     | XPD Measurement X                                                                                    | Memo:                                                                       |
|     | XRD Measurement                                                                                      |                                                                             |
|     | Flow sequence completed.                                                                             | Calculated scan duration: 54min 47s           Run         OK         Cancel |
|     |                                                                                                      |                                                                             |

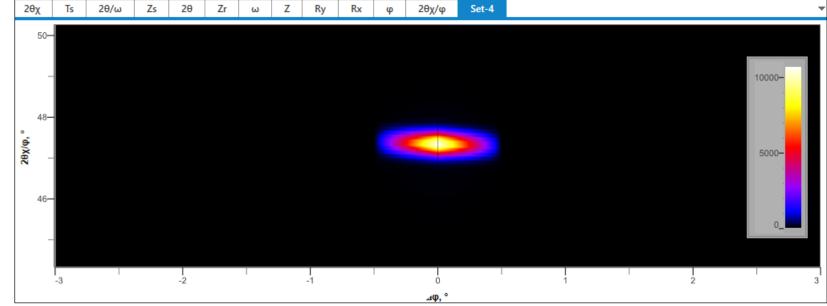

For training with Silicon: Do not Run

14. If the parameters were chosen properly, you should eventually see a series of peaks appear at the appropriate  $\alpha$  and  $\beta$  positions



#### Package Activities Q XVI. In-Plane RSM - 1/3💮 Reflection SAXS 🕐 Micro Area 🕐 Pole Figure 🗇 Residual Stress • This sequence will perform an In-Plane RSM using Parallel Beam optics 🗇 Reflectivity 🗇 Rocking Curve প RSM Select the *In-Plane RSM* under *XRD Measurement > Package Activities* 1. n-Plane In-Plane RSM 2. Drag the *In-Plane RSM Figure* into the *Flow Editor* in *Sequence* Flow Editor ? # X A 27 3. If **Optics Alignment (In-Plane)** and **Sample Alignment (In-Plane)** were previously Sequence performed, then skip to Step 4 Drop activities here (see XIII. In-Plane Measurement for review) 📋 In-Plane RSM Optics Alignment (In-Plane) ? 4. Left-click on *In-Plane Pre-Measurement* ? Sample Alignment (In-Plane) In-Plane Pre-Measurement 0? 5. Perform the *In-Plane Pre-Measurement* In-Plane RSM Measurement 0 ? (see XIII. In-Plane Measurement for review) – optimized $\varphi$ and $2\theta \chi$ should be found 2θχ Ts 2θ/ω Zs 2θ Zr ω Z Ry Rx 2θ/ω Zs 2θ Zr ω Z Ry Rx φ 10,752, 1974,1211, 0,214 [47.3230, 2031.1210, 0.3070] 2000-

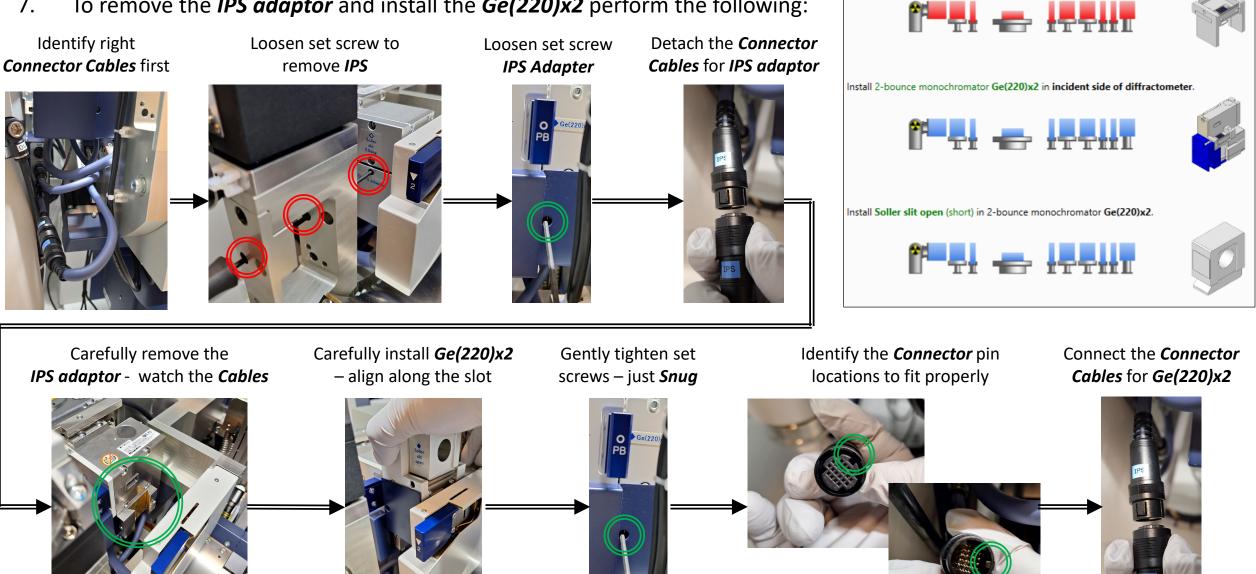




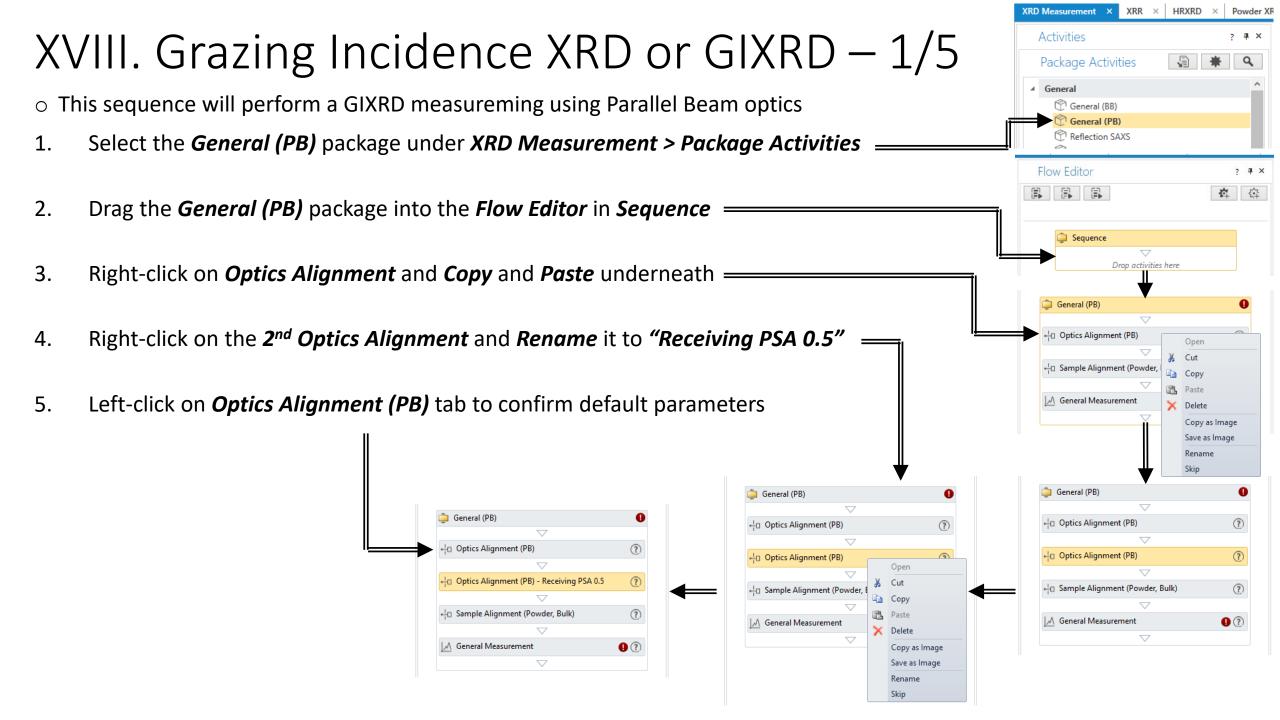

| $\lambda \Lambda$ |                                               |                |                          |            |              |                  | Ę                         | 🃮 In-Plane RSM              |                    | 0      |
|-------------------|-----------------------------------------------|----------------|--------------------------|------------|--------------|------------------|---------------------------|-----------------------------|--------------------|--------|
| X١                | /I. In-Plane RSM $- 2/3$                      |                |                          |            |              |                  | (                         | -<br>Optics Alignment (In-F | Vane)              | (?)    |
|                   |                                               |                |                          |            |              |                  |                           |                             | $\bigtriangledown$ |        |
| C                 |                                               |                |                          |            |              |                  | l'                        | In-                         | Plane)             | ?      |
| 6.                | Left click <i>In-Plane RSM Measurement</i> =  |                |                          |            |              |                  |                           | M In-Plane Pre-Measurer     |                    | •      |
|                   |                                               |                |                          |            |              |                  |                           |                             | $\bigtriangledown$ |        |
| -                 | Confirme Manuelte entrie is sheed,            |                |                          |            |              |                  | <b>'</b>                  | M In-Plane RSM Measure      | ment               | 9      |
| 7.                | Confirm <i>Move to origin</i> is checked ———— |                |                          |            |              |                  |                           |                             | ~                  |        |
|                   |                                               |                |                          | Customiz   | ze - In-Plan | e RSM Meas       | surement                  |                             | ?                  | ×      |
| 8.                | Click <i>Read Current Positions</i> and       | In-plane RSN   | I measurement conditi    | ons        |              | Incident angle   | 2                         | Move to                     | origin             |        |
|                   | Read Current Incident Angle to set the        | Data acquisit  | tion method: φ step, 2   | θχ/φ scan  | × .          | o, °: 0.2400     |                           |                             | 17 2015            |        |
|                   | proper <i>Origin</i>                          |                | Narrow  Normal           |            | u            |                  |                           | 2θχ, °: 4                   |                    |        |
|                   |                                               | Mange. O       |                          | wide       | 2            | θ, °: 0.2400     |                           |                             | 111.052            |        |
|                   |                                               |                |                          |            |              | -Read Curlent Ir | d <mark>dent Ängle</mark> | Kead (ur                    | rent Positions     |        |
| 9.                | Configure the following:                      | Manual e       | exchange slit conditions |            |              |                  |                           |                             |                    |        |
|                   | • Start                                       |                |                          |            |              |                  |                           |                             |                    |        |
|                   | • Stop                                        | in-plane PSC   | . In-plane PSC 0         | 5          | In plane     | ETGA: In-plane   |                           | $\sim$                      |                    |        |
|                   |                                               | Length-limiti  | ing slit: 10 mm          |            | $\sim$       |                  | Read Curre                | ent Optics                  |                    |        |
|                   | • Step                                        | Scan condition |                          |            |              |                  |                           |                             |                    |        |
|                   | • Speed                                       | Scan conuni    |                          |            |              |                  |                           |                             |                    |        |
|                   |                                               | Incident slit, | mm: 0.100                |            |              |                  |                           |                             |                    |        |
|                   |                                               | Step Axis      | Scan Mode                | Range      | Start, °     | Stop, °          | Step, °                   | Number of St                | eps                |        |
|                   |                                               | φ              | 0D(step)                 | Relative 🗸 | -3.000       | 3.000            | 0.100                     | 61                          |                    |        |
|                   |                                               | Scan Axis      | Scan Mode                | Range      | Start, °     | Stop, °          | Step, °                   | Speed, °/min                | Attenuato          | r      |
|                   |                                               | 2θχ/φ          | 0D(continuous) 🗸         | Relative 🗸 | -3.000       | 3.000            | 0.096                     | 5.00                        | Auto               | $\sim$ |
|                   |                                               |                |                          |            |              |                  |                           |                             | -                  |        |

#### XVI. In-Plane RSM - 3/3

| 10. | Input your desired <i>File name</i> and <i>File location</i> here | Save measured data                                                                           |
|-----|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 11. | Click <b>Run</b> then <b>OK</b> when completed                    | File name: anager\Silicon Wafer Training Manual Scans\Si Wafer 011 In Plane Pole Figure.rasx |
|     | XRD Measurement                                                   | Memo:                                                                                        |
|     | Flow sequence completed.                                          | Calculated scan duration: 54min 47s           Run         OK         Cancel                  |
|     |                                                                   |                                                                                              |


For training with Silicon: Do not Run




| X١         | /II. Monochromator Ge(220)x2 – 1,                                                                                                                                                              | /2                                                                                                                                                                                      | General (PB) +□ Optics Alignment (PB) ↓□ Sample Alignment (Powder, Bull | 0<br>(7)<br>(k) (7) |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------|--|--|--|--|
| ⊙ TI<br>1. | nis sequence will show how to use Monochromator Ge(220)x2 using Parallel<br>Left-click on <i>Optics Alignment (PB)</i> tab to select optics                                                    | ·                                                                                                                                                                                       | General Measurement                                                     | ••••                |  |  |  |  |
| 2.         | Select <i>Ge(220)x2</i> for the <i>Incident monochromator</i>                                                                                                                                  | Optical settings                                                                                                                                                                        | 2                                                                       |                     |  |  |  |  |
| 3.         | Confirm <b>Use default optics</b> is selected under <b>Optical settings</b>                                                                                                                    | onfirm <i>Use default optics</i> is selected under <i>Optical settings</i>                                                                                                              |                                                                         |                     |  |  |  |  |
| 4.         | Confirm <i>Full</i> is selected under <i>Alignment conditions</i>                                                                                                                              | Alignment conditions  Full Quick (Only receiving op                                                                                                                                     | vtics)                                                                  |                     |  |  |  |  |
| 5.         | Confirm <i>User settings</i> is selected, then click <i>Run</i>                                                                                                                                | Registration destination       Optics attribute:     PB-Ge(220)x2                                                                                                                       |                                                                         |                     |  |  |  |  |
| 6.         | A <i>Smart Message</i> will appear indicating all the optics and attachments that need to be <i>removed</i> (indicated in RED) and those that need to be <i>installed</i> (indicated in GREEN) | <ul> <li>User settings</li> <li>User defined settings</li> <li>System settings</li> <li>Registration date: 2024-06-20 12:</li> <li>Post alignment</li> <li>Print out results</li> </ul> | -                                                                       | New<br>Cancel       |  |  |  |  |

# XVII. Monochromator Ge(220)x2 - 2/2

To remove the *IPS adaptor* and install the *Ge(220)x2* perform the following: 7.



Remove the IPS adaptor.



# XVIII. Grazing Incidence XRD or GIXRD – 2/5

| 6.  | Confirm the following are selected:                    |                                                        | Optics Alignment (PB)                                                                                |
|-----|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|     | • Optical settings $\rightarrow$ Use default optics    |                                                        | Optical settings                                                                                     |
|     | • Alignment conditions $\rightarrow$ Full              |                                                        | Incident monochromator: None                                                                         |
|     | •                                                      |                                                        | Receiving optics: Slit                                                                               |
|     | • Registration destination $\rightarrow$ User settings |                                                        | Run alignment for vertical transmission geometry     Use default optics 	Customize optics 	Customize |
| 7.  | Click <b>Run</b>                                       |                                                        | Alignment conditions                                                                                 |
|     | and then <b>OK</b> when completed                      |                                                        | Full Quick (Only receiving optics)                                                                   |
|     |                                                        | 🧔 General (PB)                                         | Registration destination                                                                             |
| •   |                                                        | →□ Optics Alignment (PB)                               | Optics attribute: PB                                                                                 |
| 8.  | Left-click on <b>Optics Alignment (PB)</b>             |                                                        | User settings                                                                                        |
|     | – <b>Receiving PSA 0.5</b> tab                         | - Optics Alignment (PB) - Receiving PSA 0.5 (?)        | O System settings                                                                                    |
|     |                                                        | +u Sample Alignment (Powder, Bulk)                     | Registration date:                                                                                   |
| •   |                                                        |                                                        | Run OK Cancel                                                                                        |
| 9.  | Change the <i>Receiving optics</i> to <i>PSA 0.5</i> ° | General Measurement                                    |                                                                                                      |
|     | and check <b>Quick (Only receiving optics)</b>         |                                                        | XRD Measurement ×                                                                                    |
|     |                                                        | Optics Alignment (PB) ② ×                              | Flow sequence completed.                                                                             |
|     |                                                        | Optical settings                                       |                                                                                                      |
| 10. | Click <b>Run</b>                                       | Incident monochromator: None                           | ОК                                                                                                   |
|     | and then <b>OK</b> when completed as well              | Receiving optics: PSA 0.5°                             |                                                                                                      |
|     |                                                        | Run alignment for vertical transmission geometry       |                                                                                                      |
|     |                                                        | Use default optics      Customize optics     Customize |                                                                                                      |
|     |                                                        | Alignment conditions                                   |                                                                                                      |
|     |                                                        | Quick (Only receiving optics)                          |                                                                                                      |

#### XVIII. Grazing Incidence XRD or GIXRD – 3/5

| 11. | Left-click on <i>Sample Alignment (Powder, Bulk)</i> to           | Sample Alignment (Powder, Bulk)                                              |  |  |  |  |
|-----|-------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|
|     | set <b>Sample Info</b>                                            | Sample alignment conditions                                                  |  |  |  |  |
| 40  |                                                                   | Attachment and sample plate RxRy attachment head + 4-inch wafer sample plate |  |  |  |  |
| 12. | Set the Attachment and sample plate to                            | No height alignment     Set registered position without alignment            |  |  |  |  |
|     |                                                                   | Curved sample (Z scan only)                                                  |  |  |  |  |
| 13. | Select <i>Flat sample</i>                                         | Flat sample     Sample height, mm:     Sample thickness, mm:     0.5         |  |  |  |  |
| 14. | Input your <i>Sample Info</i> per the dimensions                  | Run recommended sequence      Customize conditions      Customize            |  |  |  |  |
|     | Incident direction of Height<br>x-ray when $\phi = 0 \text{ deg}$ | ✓ Put a sample every time                                                    |  |  |  |  |
|     | Thickness                                                         | Run OK Cancel                                                                |  |  |  |  |
|     | <u></u>                                                           | XRD Measurement ×                                                            |  |  |  |  |
| 15. | Click <i>Run</i> and then <i>OK</i> when completed                | Flow sequence completed.                                                     |  |  |  |  |
|     |                                                                   | Ч                                                                            |  |  |  |  |

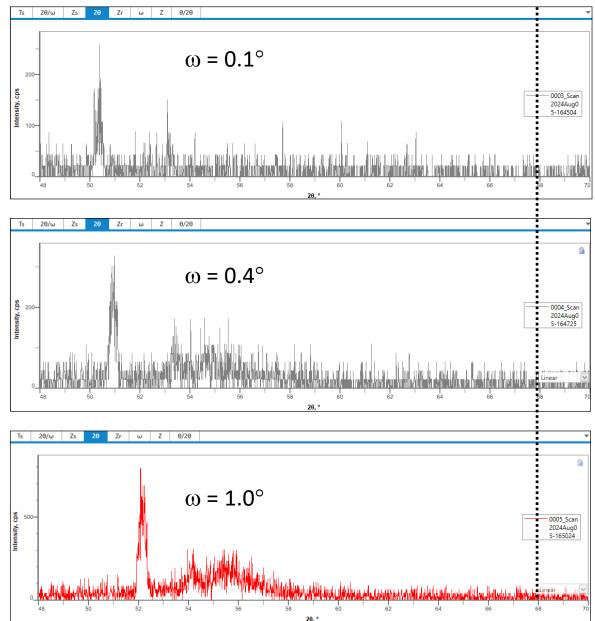
| XVIII. Grazing Incidence XRD or GIXRD – 4/5                                                                                                                                                                                                                                                                                             | General (PB)                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 16. Left-click on <i>General Measurement</i>                                                                                                                                                                                                                                                                                            | ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     Optics Alignment (PB) - Receiving PSA 0.5     ⑦)     ✓ |
| 17. Left-click on the drop down for <i>Manual exchange slit conditions</i>                                                                                                                                                                                                                                                              | + <sup>1</sup> □ Sample Alignment (Powder, Bulk) ⑦<br>✓<br>M General Measurement ⑦<br>⑦                      |
| 18. Click on the box for <i>Manual exchange slit conditions</i>                                                                                                                                                                                                                                                                         |                                                                                                              |
| 19. Click on <i>Read Current Optics</i>                                                                                                                                                                                                                                                                                                 | s (V                                                                                                         |
| 20. Select $2\theta$ for the <i>Scan Axis</i>                                                                                                                                                                                                                                                                                           | 5                                                                                                            |
| <ul> <li>21. Input desired <i>Start, Stop, Step,</i> and <i>Speed</i> values</li> <li>22. Set both the <i>Receiving Slit #1</i> and <i>#2</i> to <i>20</i> and <i>20.1 mm</i>; respectively</li> </ul>                                                                                                                                  |                                                                                                              |
| Measurement conditions                                                                                                                                                                                                                                                                                                                  | Ĭ                                                                                                            |
| Attachment base: χφZ attachment                                                                                                                                                                                                                                                                                                         |                                                                                                              |
| Exec.       Scan Axis       Range       Start, °       Stop, °       Step, °       Speed, °/min       Incident       Receiving       Receiving       Attenuator         Image: Start, °       Stop, °       Step, °       Speed, °/min       Slit, mm       Slit #1, mm       Slit #2, mm       Attenuator                              | Comment _ Options _                                                                                          |
| 1 🗹 20 🗸 Absolute 🗸 48.0000 70.0000 0.0100 12.0000 1.000 20.000 20.100 🗸 Open                                                                                                                                                                                                                                                           | Set ^                                                                                                        |
| 2       ✓       20       ✓       Absolute ✓       48.0000       70.0000       0.0100       12.0000       1.000       20.000       20.100       ✓       Open         3       ✓       20       ✓       Absolute ✓       48.0000       70.0000       0.0100       12.0000       1.000       20.000       20.100       ✓       Open       ✓ | Set                                                                                                          |

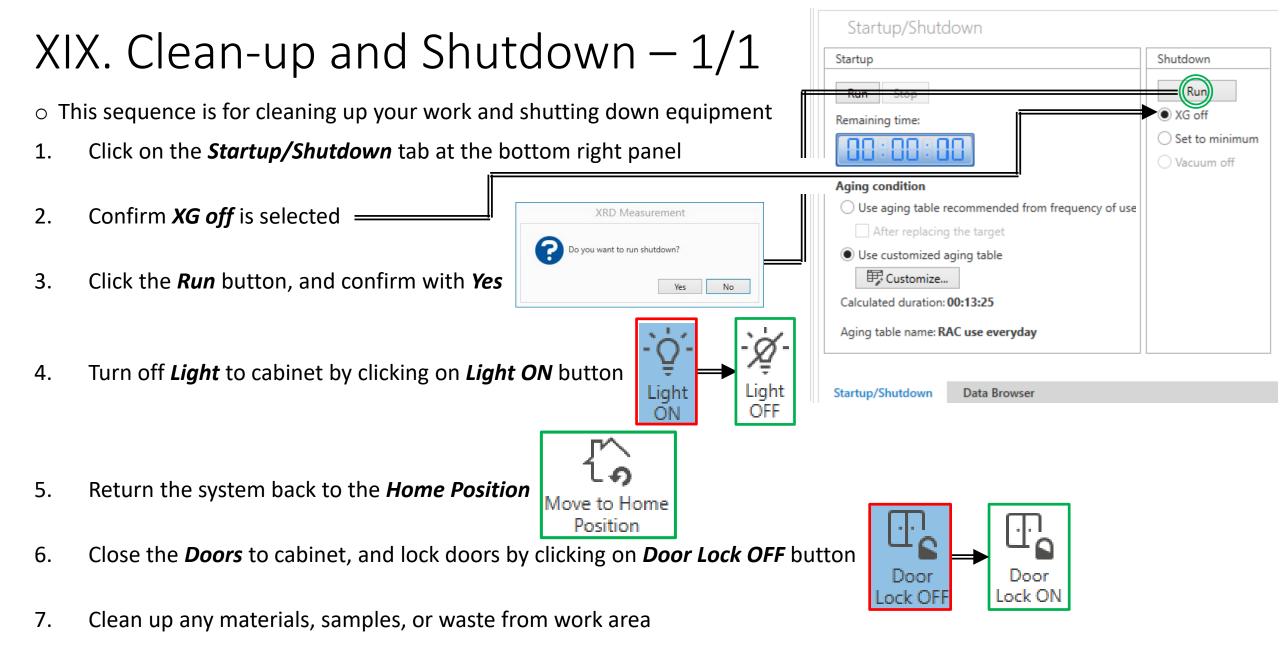
### XVIII. Grazing Incidence XRD or GIXRD – 4/5

#### 23. Left-click on *Set...*

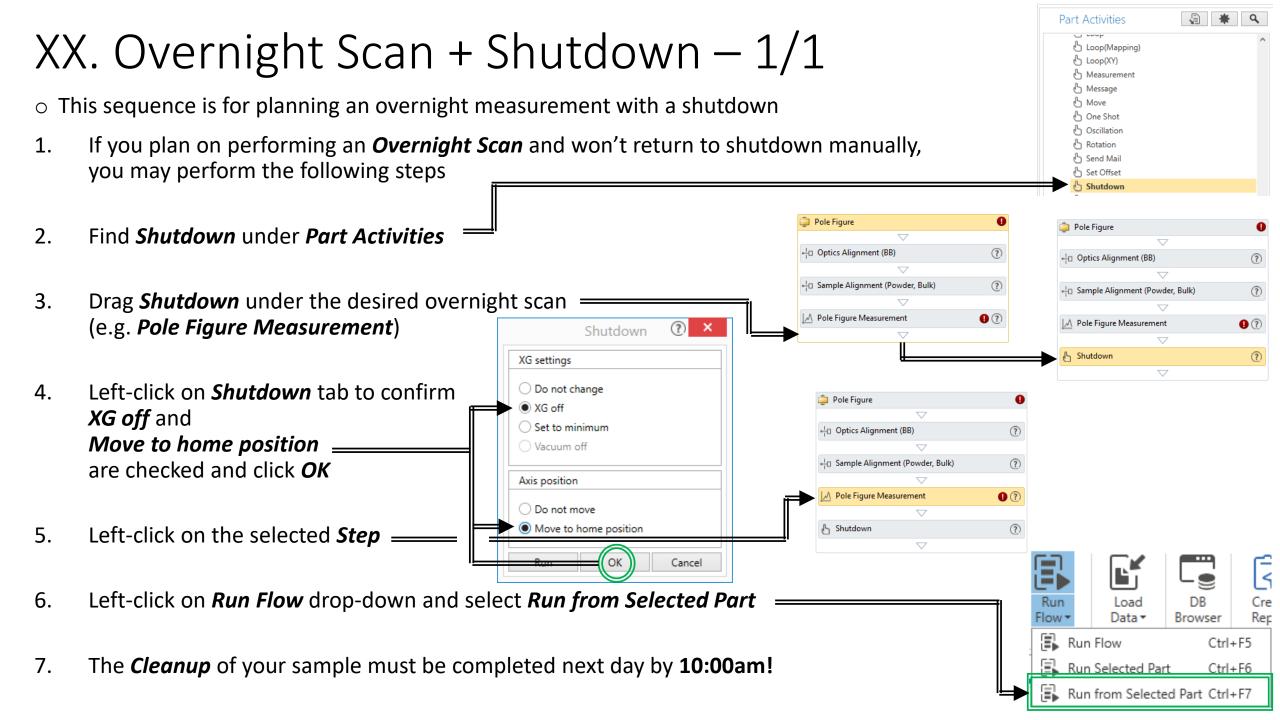
| Measu  | rement       | condition  | 5            |         |                                                                                    |          |         |              |        |                                  |                        |                            |                          |                       |         |           |       |
|--------|--------------|------------|--------------|---------|------------------------------------------------------------------------------------|----------|---------|--------------|--------|----------------------------------|------------------------|----------------------------|--------------------------|-----------------------|---------|-----------|-------|
| Attach | ment b       | ase: χφΖ a | ttachm       | ent     |                                                                                    |          |         | ~ A          | tachme | nt head: Attachment              | t without mova         | ble axis                   |                          | $\sim$                |         |           |       |
|        | Exec.        | Scan Axi   | s            | Range   | =                                                                                  | Start, ° | Stop, ° | Step         | °<br>= | Speed, °/min =                   | Incident<br>Slit, mm 😑 | Receiving<br>Slit #1, mm = | Receiving<br>Slit #2, mr |                       | Comment | = Options | =     |
| 1      | $\checkmark$ | 20         | ~ A          | bsolute | ~ 4                                                                                | 8.0000   | 70.0000 | 0.0100       |        | 12.0000                          | 1.000                  | 20.000                     | 20.100                   | V Open V              |         | Set       | ^     |
| 2      | $\checkmark$ | 20         | ~ A          | bsolute | ~ 48                                                                               | 8.0000   | 70.0000 | 0.0100       |        | 12.0000                          | 1.000                  | 20.000                     | 20.100                   | V Open V              |         | Set       |       |
| 3      | $\checkmark$ | 20         | ~ A          | bsolute | <ul><li>✓ 48</li></ul>                                                             | 8.0000   | 70.0000 | 0.0100       |        | 12.0000                          | 1.000                  | 20.000                     | 20.100                   | V Open V              |         | Set       |       |
| Se     | ot ሰ         | as the     | - <b>∆</b> x | is      |                                                                                    |          |         |              |        |                                  |                        | Options - G                | eneral M                 | easurement            |         |           | ?     |
|        |              |            |              |         | Attachment base: χφZ attachment V Attachment head: Attachment without movable axis |          |         |              |        |                                  | ~                      |                            |                          |                       |         |           |       |
| S۵     | st th        | o Oria     | rin +        | n deg   | iro                                                                                | d value  |         | Exec.        | Ax     | is                               | Action                 | Origin ((                  | Center)                  | Oscillation Range (±) | Start   | Stop      | Speed |
|        |              | lly rar    |              |         |                                                                                    |          |         | $\checkmark$ | ω      | <ul> <li>Move to orio</li> </ul> | gin                    | ✓ 0.1000                   | 0                        |                       |         |           |       |

- 26. You may wish to vary the  $\omega$  values to see the impact on the angle to your desired peak
- 27. Clicking on the = box will *Copy* the value from the top row if you choose to keep the values the same for each row


### XVIII. Grazing Incidence XRD or GIXRD – 5/5


Substrate Peak

#### 28. Click on *Run* then *OK* when completed


| Separate me                     | acurad file                      |        |    |   |
|---------------------------------|----------------------------------|--------|----|---|
|                                 | asured me                        |        |    |   |
| File name:                      |                                  |        |    |   |
| Sample name:                    |                                  |        |    |   |
| Memo:                           |                                  |        |    |   |
| Move to home<br>Run real-time s |                                  | leted. |    |   |
| Run real-time s                 | earch match                      | leted. | ОК | C |
| Run real-time s                 | earch match<br>Iration: 6min 31s | leted. | OK | C |
| Run real-time s                 | earch match<br>iration: 6min 31s |        | ОК | C |

29. You may wish to run different values of  $\omega$  for comparison





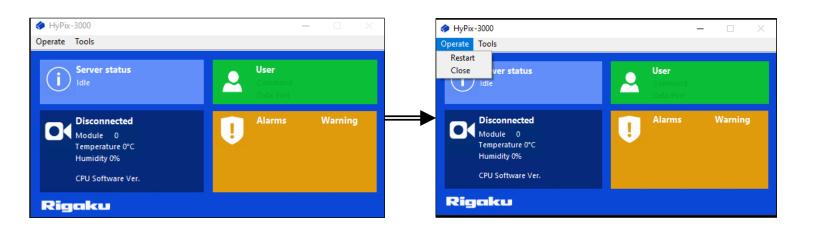
8. Record your time and make any notes in the *Sign-In Sheet* 



#### TS-A. Initial Power Up

• This sequence is only used for Initial Power Up (power completely off)

- 1. The following should ONLY be performed if instructed by the *Lab Manager*
- 2. Toggle the *Safety Key* to the right and release =
- 3. Cabinet will perform *Power Up* sequence
- 4. The *Power ON* lights will illuminate






### TS-B. Hypix Detector Troubleshooting

 $\circ$  This sequence is only used for troubleshooting the Hypix Detector

- 1. If the *Hypix Detector* needs to be remotely connected to troubleshoot...
- 2. Click on *Remote Desktop Connection* and connect to **192.168.126.70**
- 3. No password needed to access
- 4. Provides status of detector
- 5. Click on *Operate -> Restart* to reset *Alarms* if necessary



| nemote                                  | Desktop Connection                                                    | _       |          | $\times$ |
|-----------------------------------------|-----------------------------------------------------------------------|---------|----------|----------|
| <b>N</b>                                | Remote Desktop<br>Connection                                          |         |          |          |
| Computer:<br>Username:<br>You will be a | 192.168.126.70<br>None specified<br>sked for credentials when you con | nect.   | <u>_</u> |          |
| Show C                                  | ptions                                                                | Connect |          | Help     |

| Your credentials did                                          | l not work                                       |
|---------------------------------------------------------------|--------------------------------------------------|
| The credentials that were use<br>not work. Please enter new c | ed to connect to 192.168.126.70 d<br>redentials. |
| RIGAKU                                                        |                                                  |
| Password                                                      |                                                  |
|                                                               |                                                  |
| Domain: ENGR                                                  |                                                  |
|                                                               | d password.                                      |
|                                                               | d password.                                      |
| Domain: ENGR<br>Please enter a user name and<br>More choices  | d password.                                      |

# END OF SLIDES