Thin Film XRD Training Notebook

Lab Manager: Dr. Perry Cheung MSE Fee-For-Service Facility Materials Science and Engineering University of California, Riverside

September 7, 2024 (rev. 1.3)

Before you begin...

- Complete the required safety training modules on LMS
 - Laboratory Safety Fundamentals
 - Hazardous Waste Management
 - **Radiation Safety For Users of Radiation Producing Machines**
 - Compressed Gas Safety
- **G** Submit a copy of your Training Transcript to Lab Manager
- □ Review the MSE Thin Film XRD Policies and Regulations
- **Fill out the Thin Film XRD FAU Authorization Form with PI signature**
- □ Receive a user name and temporary password for Faces scheduling
- Arrange a time for Thin Film XRD training with Lab Manager
- **C** Schedule a 2 hour block on Faces for your training
- Receive a SmartLab II password

Thin Film XRD (Rigaku SmartLab II) Operation

- A. XRD Cabinet Overview
- B. Measurement Basics
- C. GUI Basics
- I. Startup
- II. XRD Detector
- III. XRD Optics
- IV. XRD Sample Attachment
- V. RS Viewer
- VI. Utility Activity
- VII. General (PB) or $2\theta/\omega$ Scan
- VIII. Azimuth or Phi (ϕ) Scan
- IX. Reflectivity
- X. Pole Figure
- XI. Rocking Curve
- XII. Reciprocal Space Map (RSM)

- XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi$
- XIV. In-Plane Azimuth or Phi (ϕ) Scan
- XV. In-Plane Pole Figure
- XVI. In-Plane RSM
- XVII. Monochromator Ge(220)x2
- XVIII. Grazing Incidence XRD or GIXRD
- XIX. Clean-up and Shutdown
- XX. Overnight Scan + Shutdown

Troubleshooting

- A. Initial Power Up
- B. Hypix Detector Troubleshooting

A. XRD Cabinet Overview – 1/2

 $\,\circ\,$ This covers the Rigaku SmartLab II XRD Cabinet and its components

(1) Power Key: Power key used to start and stop SmartLab

(2) Emergency OFF Switch: Press this switch in the event of an emergency to cut off the power supply to the main unit

(3) Door: Opened to change samples and optical devices

- (4) X-Rays ON Lamp: Lights when X-rays are generated
- (5) Observation Window: Window used to observe the inside of the cabinet

(2)

- (6) Power-on Indicator: Lights when SmartLab is powered ON
- (7) X-RAYS ON Indicator: Lights when X-rays are generated
- (8) Door-Lock Indicator: Lights when the door is locked
- (9) Alarm Indicator: Flashes when an error occurs

A. XRD Cabinet Overview – 2/2

(#)	Section	Description
1	Theta_s (θ_{s}) arm	Arm for controlling X-ray beam incident angle
2	X-ray Generator	X-ray generating device
3	Incident Optics	Optical devices for desired incident X-ray conditions
4	Theta_d (θ_d)Arm	Arm for controlling the X-ray detector angle
5	Receiving Optics	Optical devices for desired X-ray receiving conditions
6	Detector	X-ray detector
7	Sample	Adjusts the position and orientation of sample
8	In-Plane Arm (θ_{χ})	Theta_d arm used for In-Plane measurements

B. Measurement Basics – 1/10

$\,\circ\,$ This summarizes the different Scans and Information obtained

Measurement Technique (Scan)	Informatio	n Obtained	Scan Axis		
Out-of-Plane (1D)	Information on lattice plane \rightarrow Qualitative analysis	2θ/ω (Always 2θ = 2 x ω)			
Thin Film (1D)	Information near sample surface (applies only to unoriented samples) \rightarrow Qualitative analysis and crystal structure		$2 heta$ (Incident angle, ω , is fixed near the critical angle)		
In-Plane (1D)	Information on lattice planes near and perpendicular to sample surface $ ightarrow$ Qualitative analysis and crystal structure				$2 heta_\chi/\phi$ (Incident angle, ω , is fixed near the critical angle)
Pole Figure (2D)	Information on distribution of specific crystal orientation \rightarrow Orientation analysis		$\chi(\alpha)$, $\phi(\beta)$ (2θ or sum of 2θ and 2 θ_{χ} is fixed at the diffraction angle)		
Preferred orientation and crystallinity measurement (1D)	Information on degree of preferred orientation or crystallinity \rightarrow Orientation and crystallinity analysis		ω, χ, or φ		
Rocking Curve (1D)	Information on film structure and cry $ ightarrow$ Crystallinity, film thickne		2θ/ω		
Reciprocal Space Map or RSM (2D)	Information on d-value of 3-Dimensional components of preferred orientation, crystal orientation, and degree of preferred orientation → Qualitative analysis, orientation analysis, and crystallinity analysis	Information on film structure and crystallinity of epitaxial or single crystal → Crystallinity analysis and epitaxial analysis	2θ/ω, ω (χ or φ) 2θ _χ /φ, φ (χ or φ)		
Reflectivity (1D)	ightarrow Film thickness, density, and surfa	ce or interface roughness by fitting	20/0		

B. Measurement Basics – 2/10

$\,\circ\,$ This covers the Goniometer Optics and Measurement Axes

B. Measurement Basics – 3/10

 $\,\circ\,$ This covers the Out-of-Plane (1D) or General (PB) XRD or 20/ $\!\omega$ Measurement

Movement:

• 2θ is driving arm; 2θ range = -10 to 158°

• ω is slave arm; $\omega = \frac{1}{2}(2\theta)$

Pros:

- Used for Qualitative analysis such as:
- Determining presence or absence of a preferred orientation
- Interplanar spacings of lattice planes parallel to surface
- Lattice constants corresponding to these interplanar spacings
- Crystallinity of a crystal lattice parallel to the surface Cons:
- Cannot observe lattice planes perpendicular to surface
- Cannot provide information on presence or absence of the in-plane orientation
- Cannot distinguish between a fiber-oriented and a single crystal

B. Measurement Basics – 4/10

 $\,\circ\,$ This covers the Thin Film (1D) or Grazing Incidence XRD or GIXRD Measurement

Movement:

- 2θ is driving arm; 2θ range = -15 to 120°
- ω is set near a small critical angle usually between 0.1 to 1° Pros:
- Avoids scattering from the substrate
- Used for Qualitative analysis such as:
- For unoriented (or weakly oriented) polycrystal samples
- Lattice constants
- Crystallinity of a sample
- Depth dependence of above physical quantities Cons:
- Cannot be used to analyze strongly oriented polycrystal sample or single crystal

B. Measurement Basics – 5/10

 $\circ~$ This covers the In-Plane (1D) XRD or $2\theta_{\chi}/\phi$ Measurement

Movement:

- $2\theta_{\chi}$ is driving arm; $2\theta_{\chi}$ range = -3 to 89°
- ω is set near a small critical angle usually between 0.1 to 1 $^\circ$
- ϕ is slave arm; $\phi = \frac{1}{2} (2\theta_{\chi})$

Pros:

- Similar to GIXRD with respect to depth of analysis
- Used for Qualitative analysis such as:
- Investigating presence or absence of the preferred orientation
- Interplanar spacings of lattice planes perpendicular to the surface
- Lattice constants corresponding to these interplanar spacings
- Crystallinity of the crystal lattice perpendicular to the surface
- Presence or absence of in-plane orientation
- Distinguish between fiber-oriented sample and single crystal or confirm presence or absence of twinning

Cons:

- Cannot observe lattice planes parallel to surface
- Cannot provide information on presence or absence of the outof-plane orientation

B. Measurement Basics – 6/10

 \circ This covers the Pole Figure (2D) Measurement

Movement:

- 2θ is kept constant; $\omega = \frac{1}{2}(2\theta)$
- α is stepped; α range = -5 to 95°
- β is continuously rotated; β range = -720 to 720°

Pros:

- Measures diffraction intensity distributions by rotating the sample in all directions while keeping the diffraction angle constant
- Direction at high diffraction intensity is observed corresponds to the preferred direction of the pole figure axes – indicating that crystallites with the measurement planes oriented in that direction are dominant

Notes:

- Remember that α = 90° χ in SmartLab II
- Choose α step values carefully!
- lpha step controls the resolution (and max intensity)
- Speed of β scan controls the sign-to-noise ratio of scans

B. Measurement Basics – 7/10

 $\circ~$ This covers the Preferred Orientation (1D) or Azimuth or ϕ Scan Measurement

Movement:

- 2θ is kept constant; $\omega = \frac{1}{2}(2\theta)$
- ϕ is continuously rotated; ϕ range = -720 to 720° Pros:
- Same underlying principles for pole figure measurement
- Measures a cross-section of a pole figure measurement
- Measures the spread (width) of diffraction intensity distribution
- Related to degree of preferred orientation (vs randomly orientated sample)
- Related to mosaicity (vs perfect single crystal)
- Quicker to perform than full pole figure measurement Notes:
- Remember to optimize χ value first!
- Speed of $\boldsymbol{\phi}$ scan controls the sign-to-noise ratio of scans

B. Measurement Basics – 8/10

$\,\circ\,$ This covers the Rocking Curve (1D) Measurement

Movement:

- ω is driving arm; ω (relative) range = -5° to +5°
- 2θ is kept constant; $2\theta = 2\omega$

Pros:

- Measures diffraction intensity distributions along a reciprocal lattice vector
- Planes no longer parallel with sample surface are brought onto the Bragg plane
- Measures changes in interplanar spacing
- Generally used to evaluate the thickness or mixed crystal ratio of an epitaxial film on a sample
- Width of rocking curve depends upon mosaic spread of the grains, density of dislocations, and substrate curvature
- FWHM is recorded and indication of quality of intended epitaxial growth or preferential orientation

Notes:

• Do not mix up width of rocking curves with the widths on the peaks in the $2\theta/\omega$ scans

B. Measurement Basics – 9/10

 $\,\circ\,$ This covers the Reciprocal Space Mapping or RSM (2D) Measurement

Movement:

- $2\theta/\omega$ scan is one mapped direction
- ω scan is second mapped direction

Pros:

- Measures diffraction intensity distributions and plots result in reciprocal space
- Central coordinates, shapes, and positional relationships of the reciprocal lattice points (film and substrate) appearing in 2D map provides a wide range of info on crystal structure

Notes:

- Each ω step $\rightarrow 2\theta/\omega$ scan is performed (q_x)
- Each $2\theta/\omega$ step $\rightarrow \omega$ scan (Rocking Curve) is performed (q_v)

B. Measurement Basics – 10/10

$\,\circ\,$ This covers the Reflectivity (1D) Measurement

Movement:

• 2θ is driving arm; 2θ range = 0 to 10°

• ω is slave arm; $\omega = \frac{1}{2}(2\theta)$

Pros:

- Can be used for crystalline or amorphous samples
- Evaluates thickness, density, and surface or interface roughness of thin-film materials
- Evaluates structure of a multilayer or single layer film
- Measures samples nondestructively

Cons:

- Requires surface and interfaces are flat
- May require monochromator to yield higher resolution for thicker films

C. GUI Basics -1/3

• These slides will teach you GUI Basics

Instrument

C. GUI Basics – 2/3

- Flow Controls used to control your Measurement Flow (or Measurement Program)
 - *Wizard* will help you selected the recommend packages for desired measurement/analysis

- New Flow remove existing Flow and create a New Flow package
- **Open Flow** open existing **Flow** that you have saved in the **File System**
- Save Flow saves your edited Flow into the Files System
- Save Flow As saves your edited Flow as a new file into the Files System DB Cre Run Load Data • Browser Rep low - Run Flow Run Flow Ctrl+F5 • *Run Flow* – runs your entire *Flow* from top to bottom Ctrl+F6 Run Selected Part *Run Selected Part* – only runs the *Selected Part* ٠ Run from Selected Part Ctrl+F7
 - Run from Selected Part will run your entire runs your flow from top to bottom starting from Selected Part (useful for Shutdown)

C. GUI Basics -3/4

- Instrument Controls useful controls for the Instrument
 - Light Turns the Light ON and OFF inside Cabinet

- Door Lock Toggles the Door Locks ON and OFF
- Move to Home Position Moves the Goniometer axes to the starting Home Position useful for exchanging optics

Door

Light

ON

Door Lock ON

(1)

RS

Viewer

Tools

• Tools Control – opens Reciprocal Space (RS) Viewer – see V. RS Viewer

Move to Home

Position

5

RS

Viewer

Tools

I. Startup - 1/2

- This sequence is used for Initial Startup sequence
- 1. Sign-in on the *Sign-in Sheet*
- 2. First *Double-click* on *SmartLab Studio II* software icon
- 3. Enter your *Login* and *Password*
 - Login: Faces Login Password: Provided by Lab Manager
- 4. Confirm that "*XRD Measurement | Ready*" is shown \implies XRD Measurement Ready then proceed to Step 8
- 5. If *Status* is *"XRD Measurement |Ready (Not Connected)"*, → XRD Measurement Not ready (Connected) you will need to follow *Steps 6-7* to restart the *Server*
- 6. Access lower right *Hidden Icons* tray, $\land \square \square \square$

7. If icon is not *Green*, then *Right-click* and click on *Restart* to enable, then proceed to *Step 8*

15. The *Operational Level* should now be set to 40 kV and 44 mA (1.8 kW) for normal operation

II. XRD Detector -1/1

$\,\circ\,$ This covers the Detector

Detector	Orientation (Orientation (Applications)		tector
HyPix-3000 (2D Detector)	Horizontal (Default)	Vertical (Micro Area)	Window p	Window
Image: constraint of the sector adaptor	<image/> <section-header></section-header>	<image/> <section-header></section-header>		Protector must be inserted to protect Detector when swapping out Receiving Optics! \$\$\$\$\$
	Mark indicates position of detector adapter and is +50 mm from the detection plar i.e. <i>Detector Plane</i> of 300 mm \Rightarrow <i>Detector Adaptor Position</i> of 350 mm			

III. XRD Optics – 1/6

\circ This covers the Incident Optics Unit #1

Incident Optics Unit #1	Incident Optics Parallel beam method (PB) Para-focusing method (BB) Micro Area (MA) 0.5 Micro Area (MA 0.3)				
CBO – Cross Beam Optics				Micro Area (MA) 0.3	
	PB LO	B			

III. XRD Optics – 2/6

• This covers the Incident Optics Unit #2

Incident Optics Unit #	#2	Incident Parallel Slits (Aperture) + IPS Adaptor		
Incident Parallel Slit (IPS) + Adaptor	Ge(220) 2-bounce monochromator	Soller Slit (Open)	Soller Slit (5.0deg)	In-plane PSC (0.5deg)
	Ge(220)x2 Solier sit open Open	Image: site open Solier Solier		<image/>

III. XRD Optics – 3/6

$\,\circ\,$ This covers the Incident Slit

		Length	-Limiting Slit (Ap	erture)	
Incident Slit	10 mm	5 mm	2 mm	0.5 mm	0.2 mm
Image: Non-State State St					

III. XRD Optics -4/6

$\,\circ\,$ This covers the Receiving Slit

Receiving Slit			kβ Filters (Thickness)	
Receiving Slit Box	Insertion Diagram	CuK β 1D (23 μm)	CuK β 15 μm (15 μm)	9 kW filter
Implementation Implementation Implementation Implementa				9kW filter

III. XRD Optics – 5/6

 $\,\circ\,$ This covers the Receiving Optics Unit #1

Receiving Optics Unit #1	Parallel Slits Analyzers (A	Aperture) + ROD Adaptor
Parallel Slit Analyzer (PSA) + Adaptor	PSA (Open)	PSA (0.5deg)
PSA open PSA open PSA open PSA open Paga O.5deg O.5deg Paga Paga		<image/>

III. XRD Optics – 6/6

• This covers the Receiving Optics Unit #2

Receiving Optics Unit #2	Receiving Parallel Slits (Aperture) + RPS Adaptor
Receiving Parallel Slit (RPS) + Adaptor	Soller Slit (5.0deg)	In-Plane PSA (0.5deg)
PSA open * PSA open * PSA open * PSA 0.5deg 0.5deg • *<	Soller Soller Soller	Right Control of the second se
	RPS adaptor	RPS adaptor

IV. XRD Sample Attachment -1/2

$\,\circ\,$ This covers the Sample Attachment Heads

Attachment Platform	Attachment Heads (Applications)			
χφZ Attachment Platform	Standard (Alignment, Bulk Sample)	RxRy (Reflectivity, RSM, In-Plane)	XY-20 mm (Micro-area)	
<image/>				
		Carefully align Attachmen Platform via the black DO NOT BEND OR DAMAG		
		Secure in place by closing t	he Clasps and Front Latch .	

IV. XRD Sample Attachment – 2/2

• This covers the Sample Plates (Note: Does not have recognition chips – you must remove even if not instructed!)

Sample Plate	Picture	Installation	Removal
Height Reference Sample			
Sample Spacer			
Wafer Sample Plate			

V. RS Viewer - 1/2

- These slides will teach you about the Reciprocal Space (RS) Viewer
- Click on the **RS Viewer** icon at the top of the **XRD Measurement** plugin 1.
- Click on the ? icon to open up the RSViewer_UserManual_en.pdf to review the tutorial 2.
- 3. Add and edit layers to build up your substrate + films
- Edit the *Samples Axes* (if known) to correlate actual sample to reciprocal lattice (e.g. Si wafer) \implies 4.

Set *Geometry* for your scans: *Out of plane* or *In-Plane* 5.

6. Enter in desired reflection plane in *Origin* or select the *Shape Icon*

(Jr

RS

V. RS Viewer -2/2

V. RS Viewer - 3/4

• These slides will teach you how to load your sample information if not in the database already

		Accessing COD Data				Search		
12.	Click on the <i>Search</i>	Browse Search Search by structural formula JSME search			(For more Search by COD ID:	information on search see the <u>hin</u>	ts and tips)	
13.	Search for your desired sample us (e.g. Text, Journal, Chemical Form	• •	hod ———		<u>OpenBabel FastSearch</u> :	Enter <u>SMILES</u> :	Search	
14.	Identify the desired sample inform	nation you want to in	nport	Note: su	bstructure search by SMILE text (1 or 2 words) iournal	S is currently available in a subset o	f COD containing 225655 s	structures.

Y 11.6303 L; Tholence, J L; Tournier, R	COD ID 🔺 Li	nks Formula 🛦	Space group 🛦	Cell parameters	Cell volume 🛦	Bibliography
	<u>1001452</u>	E Ba2 Cu3 O7 Y	<u>P m m m</u>	11.6303	172.1	Structure of the 100 K Superconductor Ba~2~ Y Cu~3~ O~7~ between (5- 300)K by Neutron Powder Diffraction

×

15. Click on the *CIF* link and download the file into your *CIF Folder*

V. RS Viewer -4/4

17. Click on the *Import from File* tab and select *CIF*

- 18. Select the *CIF* file that you had downloaded
- 19. The sample information should now be available for you in the *Material* selection in *RS Viewer*

Sample name:		Import Sample	Export Sample Ser	nd Sample	
		mportoampro	- Aport Dumpio		
 Layer operation 	ations	 Group operat 	ions		
+	-				
Duplicate Lav	er Up Down				
	All Layers Edit An	chors			
Remove		chors			
	Layer _			Show reflection	Show forbidder
Shape	Layer	Material	Show reflection	billott reneeded	Show forbiduct

VI. Utility Activity – 1/2

- This sequence will perform a Mirror Alignment and HyPix Adjustment BEFORE and AFTER using the Monochromator Ge(220)x2
- 1. Select the *Mirror Alignment* activity under *XRD Measurement > Part Activities*

Alignment conditions

Alignment mirror: CBO

Run

2. Drag the *Mirror Alignment* activity into the *Flow Editor* in *Sequence*

4. Click on *Mirror Alignment* activity and select *CBO*, and click *OK*

3.

5. Click on *HyPix Adjustment* activity and confirm only the first 2 options are checked, and click *OK*

Drag the *HyPix Adjustment* activity in *Sequence*

- a) Temperature correction
- b) Create mask file

VI. Utility Activity -2/2

- 6. Click on *Run Flow* to perform Mirror Alignment and HyPix Adjustment automatically
- A Smart Message will appear indicating all the optics and attachments that need to be removed (indicated in RED) and those that need to be installed (indicated in GREEN)
- 8. Proceed to perform each step in sequence and click **OK** when completed =

Note: Your Smart Message may differ from example shown

9. Mirror Alignment will be performed first, followed by HyPix Adjustment

Run Flow •

VII. General (PB) or $2\theta/\omega$ Scan – 2/7

- 7. Confirm *Use default optics* is selected under *Optical settings*
- 8. Confirm *Full* is selected under *Alignment conditions*
- 9. Confirm *User settings* is selected, then click *Run*

Optical settings		
Incident monochro	omator: None	\sim
Receiving optics:	Slit	\sim
Run alignment	for vertical transmission geometry	
Use default opt	ics O Customize optics Customize	
Alignment conditic Full Quick (ons Only receiving optics)	
-	Only receiving optics)	
Full Quick (Only receiving optics)	
Full Quick (Only receiving optics) ation	✓ New
Full Quick (Registration destin Optics attribute:	Only receiving optics) ation PB	New

10. A *Smart Message* may appear indicating all the optics and attachments that need to be *removed* (indicated in **RED**) and those that need to be *installed* (indicated in **GREEN**)

			Sm	art Message	
■ × Repla	ce Soller slit op	en with Soll	er slit 5.0° i	n IPS adaptor.	
	Î	TI	-	r r r iil	
Repla	ce length-limitin	g slit 5 mm	with length-	limiting slit 10 mm in ir	stegrated incident slit box.
	î	TT	-	R. T. T. T. T. H. H.	
Remo	ve the <mark>RxRy att</mark>	achment he	ad.		
	ř	TI	-	<u>₽₽₽₽₽₽</u>	
Instal	standard attac	hment head	d in χφZ att	achment platform.	
	Î	TI	-	R. L. R.	Ì
Instal	Height referen	ce sample p	plate in <mark>sta</mark> r	ndard attachment head	l.
	î	TT	-	1 	
Insert	center slit in H	eight refere	nce sample	e plate.	
	î	TI	-	*****	
	ch the detector p ust the mark of t			orizontal) to 300 mm. 350 mm)	
Hide figu				ı , 	OK V Stop

11. Click *OK* when completed —

VII. General (PB) or $2\theta/\omega$ Scan – 3/7

- 12. System will perform **Optics Alignment** on various axes (Average time \approx 4 minutes)
- 13. Wait for the *Flow sequence completed* prompt to continue by clicking *OK*

- 14. Left-click on *Sample Alignment (Thin Film)* to set *Sample Info*
- 15. Input your *Sample Info* per the dimensions —

• For training with Silicon: Thickness = 0.5 mm; Width & Height = 5 mm

VII. General (PB) or $2\theta/\omega$ Scan – 4/7

- 16. Confirm the following are checked:
 - Direct beam half cut alignment
 - Surface normal alignment
 - Put a sample when the sample alignment starts
- 17. Click *Run* (Average time \approx 6 minutes) _____

Sample informa	tion			(Thin Film)	
Sample informa	uon				
Thickness, mm:	0.5	Width, mm:	5.0	Height, mm: 5.0	(j)
Alignment cond	itions				
Attachment and	sample plate:	RxRy attachm	ient head + 4	4-inch wafer sample plate	
✓ Direct beam	half cut alignn	nent 🗹 Surfa	ce normal ali	gnment	
		Alignr	nent criteria:	Standard	
		Surfac	e density:	High (> 4.0 g/cm3)	
✓ Put a sample	when the sam	nple alignment	t starts		
Run recomm	ended sequen	ce 🔿 Custom	ize conditior	s Customize	
				ОК	Car

- 18. If *Sample Alignment (Thin Film)* fails, try changing surface density
- For training with Silicon: Surface density should be set to High
- 19. Wait for the *Flow sequence completed* prompt to continue by clicking *OK*

VII. General (PB) or $2\theta/\omega$ Scan – 5/7

20. Left-click on *General Measurement* to set scan conditions

							General Mea	asurement					?	×
	Manual e	kchange slit o	onditions				filter condition		•	Detector conditior	15			•
Mea	suremen	t conditions												
Atta	chment k	oase: χφΖ att	achment			✓ Attachme	nt head: Attachmen	t without moval	ble axis		\sim			
	Exec.	Scan Axis	Range	Start, °	Stop, °	Step, °	Speed, °/min =	Incident Slit, mm 😑	Receiving Slit #1, mm 😑	Receiving Slit #2, mm 😑	Attenuator =	Comment	Options =	
	1 🔽	2θ/ω	✓ Absolute	✓ 68.0000	71.0000	0.0100	4.000	1.000	1.000	1.100 🗸	Open 🗸		Set	^
	2	θ/2θ	Y Absolute	3.0000	80.0000	0.0100	4.000	1.000	1.000	1.100 🗸	Open 🗸		Set	-

21. Select $2\theta/\omega$ for the *Scan Axis*

- 22. Adjust the following parameters based on your desired scan conditions
 - Start, °: Enter starting scan position for 2θ angle (e.g. 68°)
 - **Stop,** °: Enter ending scan position for 2θ angle (e.g. 71°)
 - Step, °: Enter scan step size for 2θ angle (e.g. 0.01°) controls resolution or spacing of data points
 - **Speed**, °/min: Enter the scan speed (e.g. 4°/min) controls the signal/noise (S/N) ratio
- 23. The following can be increased if you wish to increase the x-ray exposure to your sample in the width dimension
 - Incident Slit, mm
 - Receiving Slit #1, mm
- Default values are automatically chosen based on sample dimensions
- Receiving Slit #2, mm

VII. General (PB) or $2\theta/\omega$ Scan – 6/7

31. If the (111) peak is not observed \rightarrow sample orientation is mismatched with **RS Viewer** via the φ position

VIII. Azimuth or ϕ Scan – 1/3

- $\circ~$ This sequence will perform an Azimuth or ϕ Scan
- 1. Left-click on *General Measurement*

2.

3.

4.

5.

	General Me	asurement			(?) ×
Manual exchange slit conditions	Kβ filter condition	•	Detector conditions		-
Measurement conditions					
Attachment base: χφZ attachment	✓ Attachment head: Attachmer	nt without movable axis	\checkmark		
Exec. Scan Axis Range Start, ° Stop, °	Step, °Speed, °/min	Incident Receiving Slit, mm = Slit #1, m		uator _ Comment _ (Options
1 2θ/ω Absolute 27.0000 30.0000	0.0100 4.000	1.000 1.000	1.100 🗸 Open		Set ^
2 🗹 φ 🔽 Absolute 🗹 0.000 360.000	0.100 120.00	1.000 1.000	1.100 🗸 Open		Set
3 0/20 Absolute 3.0000 80.0000	0.0100 4.000 Ts 2θ/ω Zs 2θ	1.000 1.000 Zr ω Z θ/2θ F	1.100 M Open	\sim	Set
elect φ for the <i>Scan Axis</i> for #2					
et Start = 0° and Stop = 360° Step = 0.1° and Speed = 120°/min	Si (111 دSi (111	L) ≠ 90°		≠ 180°	≠ 270°
lick Run (no need to save scan)	1.10 ⁺⁰⁶				
our spectra will look similar to this					300
howing the (111) peaks are not prec	sely positioned at ϕ) = 90°, 180, 2	70, 360 due to sa	ample offset!	-

360°

VIII. Azimuth or ϕ Scan – 2/3

- 6. Zoom-in one of the peaks...
- 7. Left-click on *General Measurement* again
- 8. Click on *Set...* under *Options*
- Set φ to the value of your peak position, and click OK ______

Start, °

25.0000

Scan Axis

2θ/ω

Stop,

31.0000

- 10. Set *Scan Axes* back to $2\theta/\omega$ and input *Start* and *Stop* values back to 27° and 30° _____
- 11. Click *Run* again Run

VIII. Azimuth or ϕ Scan – 3/3

12. You should see a similar spectra showing the (111) peak at around $2\theta_b = 28.4^\circ$ as suggested by the *RS Viewer*

- 13. Some measurements may perform "*Pre-Measurements*" that will identify and set the goniometer settings (e.g. 2θ , ω , ϕ , θ_{χ} , etc...) for your scans, but may not always succeed or be available
- 14. It is still up to the user to be comfortable controlling and moving the **Axes** and setting the **Origin** when appropriate

IX. Reflectivity -1/4

- This sequence will perform a Reflectivity Measurement
- Select the *Reflectivity* package under *XRD Measurement > Package Activities* 1.
- 2. Drag the *Reflectivity* package into the *Flow Editor* in *Sequence*
- 3. If **Optics Alignment (PB)** and **Sample Alignment (Thin Film)** were previously = performed, then skip to Step 11 **Optics Alignment (PB)**

Optical settings

Receiving optics:

Alignment conditions

Registration destination

PB

Optics attribute:

User settings

System settings

Registration date:

Run

Slit

- 4. Left-click on **Optics Alignment (PB)**
- 5. Confirm the following are selected:
 - Optical settings \rightarrow Use default optics
 - Alignment conditions \rightarrow Full
 - Registration destination \rightarrow User settings
- 6. Click **Run** == and then **OK** when completed

 X 13. 14.	. Reflectivity — 3 Input your desired <i>File name</i> ar Select <i>Customize conditions</i> if y	nd <i>File</i>	locatio	n here				Save meas File name: Sample name: Memo: Calculated scan	ured data	ence Custon		Cu	
15.	You may include different scan							Run			OK		Cancel
	parameters such as the					Custor	mize – Refle	ctivity Measu	rement				? ×
	Step and Speed for	Request	ed scan durati	on									
	different 2 θ ranges ————	Request	ed scan duratio	on, min:	5.0 🗘 Retu	ırn to Default V	alue						
		Man	ual exchange s	lit conditions									
		Incident	Soller slit: So	oller slit 5.0°		✓ Receiv	ring optics: S	Slit		\sim			
		Length-	limiting slit: 10) mm		V Receiv	ving Soller slit:	Soller slit 5.0°		Read Cu	rrent Optics		
		Scan co	nditions										
13.	Click OK then click Run	Scan m	de: 0D(contin	uous) 🖂									
		Exec.	Scan Axis	Range	Start, °	Stop, °	Step, °	Speed, °/min	Incident Slit, mm	Receiving Slit #1, mm	Receiving Slit #2, mm	t 4	Attenuator
			2θ/ω	Absolute	0.0000	5.0000	0.0100	12.000	0.050	0.250	0.300	~ Au	Jto 🗸
		\checkmark	2θ/ω	Absolute	5.0000	10.0000	0.0100	6.000	0.050	0.250	0.300	∼ Au	Jto 🗸
			2θ/ω	Absolute	0.0000	10.0000	0.0100	0.667	0.050	0.250	0.300	_	uto 🗸
			2θ/ω	Absolute	0.0000	10.0000	0.0100	0.667	0.050	0.250	0.300		uto 🗹
			2θ/ω	Absolute	0.0000	10.0000	0.0100	0.667	0.050	0.250	0.300	✓ Au	
									Set	Recommended Va	Calculated sc loes		ration: 1min 15s Cancel

Package Activities X. Pole Figure -1/5General 🗇 General (BB) General (PB) Reflection SAXS • This sequence will perform a Pole Figure using Parallel Beam optics Micro Area Pole Figure Residual Stress 1. Select the *Pole Figure* package under *XRD Measurement > Package Activities* Flow Editor ? # × ***** 2. Drag the *Pole Figure* package into the *Flow Editor* in *Sequence* Sequence Drop activities here 3. Right-click on **Optics Alignment (BB)** and Sample Alignment (Powder, Bulk) and select "Delete" 📮 Pole Figure XRR HRXRD XRD Measurement × × Powd Activities ? # X - Optics Alignment (BB) ? Q Part Activities Find **Optics Alignment (PB)** and 4. Sample Alignment (Powder, Bulk) ? Alignment Activity Sample Alignment (Thin Film) under Part Activities + Sample Alignment (Powder, Bulk) A Pole Figure Measurement 0 Sample Alignment (Thin Film) 5. Drag **Optics Alignment (PB)** and **Sample Alignment (Thin Film)** 👛 Pole Figure \bigtriangledown above the *Pole Figure Measurement* ? 🕂 Optics Alignment (PB) A Pole Figure Measurement 0 6. If **Optics Alignment (PB)** and **Sample Alignment (Thin Film)** were previously performed, then skip to Step 14 🚊 Pole Figure ? Optics Alignment (PB) Left-click on **Optics Alignment (PB)** 7. ? Sample Alignment (Thin Film) 0 A Pole Figure Measurement

X. Pole Figure – 2/5

- 8. Confirm the following are selected:
 - Optical settings \rightarrow Use default optics
 - Alignment conditions → Full
 - Registration destination \rightarrow User settings
- 9. Click *Run* and then *OK* when completed
- 10. Left-click on Sample Alignment (Thin Film)
- 11. Input your *Sample Info* per the dimensions

- 12. Confirm the following are checked:
 - Direct beam half cut alignment
 - Surface normal alignment
 - Put a sample when the sample alignment starts

—		Optics Alignment (PB)	\$
5		Optical settings	
		Incident monochromator: None	
. f	1	Receiving optics: Slit	
•		Run alignment for vertical transmission geometry	
s		Use default optics Customize optics Customize	
	XRD Measurement ×	Alignment conditions	
tings	Flow sequence completed.	Full Quick (Only receiving optics)	
		Registration destination	
	ОК	Optics attribute: PB	
		User settings New	
		○ System settings	
		Registration date:	
in Filme) -		Run OK Cancel	
nin Film) =	· · · ·		
		Pole Figure)
nensions —		-¦□ Optics Alignment (PB) (?	>
ח		+ ^I ^{II} Sample Alignment (Thin Film)	,
]	Sample Alignment (This Film)	Pole Figure Measurement	
>		Pole Figure Measurement	
	Sample information		
	Thickness, mm. 0.5 Width, mm. 5.0 Height, mm. 5.0		
	Alignment conditions		
	Attachment and sample plate: RxRy attachment head + 4-inch wafer sample plate	late	
	✓ Direct beam half cut alignment ✓ Surface normal alignment		
	Alignment criteria: Standard	\checkmark	
	Surface density: High (> 4.0 g/cm3)	\checkmark	
nent starts	✓ Put a sample when the sample alignment starts		

17. Choose to *Run recommended sequence* or *Customize conditions*

X. Pole Figure -4/5

- 18. Depending on your *Step* chosen, be aware that it may not be sufficient so choose the following carefully for α scan axes!
 - Start
 - Stop
 - Step
 - Speed

(Note: Will the peaks appear for α if arbitrarily chosen?)

sion): 28.4664 Step Scan Moo	20 angle, ° (Refle	ection): 28.466	4 γ	axis oscillation:	Not run	~	/			
' Scan Mod										
Axis	le Range	Start, °	Stop, °	Step, °	Inciden Slit	t	Receiving Slit #1, mm		eiving ‡2, mm	Attenuator
0D(step)	Absolute	0	15	5	0.1 mm			9.900		
0D(step)	Absolute	15.264	55.264	5.000	1/6°	\sim	10.000	9.900	\sim	Open
Scan Mode	Range		Start, °	Stop,	0		Step, °		Spe	ed, °/min
)D(continuous) 🔽	Absolute	0.000		360.000		5.00	00	:	200.00	
00	0D(step) Scan Mode	0D(step) Absolute Scan Mode Range	0D(step) Absolute 15.264 Scan Mode Range	0D(step) Absolute 15.264 55.264 Scan Mode Range Start, °	0D(step) Absolute 15.264 55.264 5.000 Scan Mode Range Start, ° Stop,	OD(step) Absolute 15.264 55.264 5.000 1/6° Scan Mode Range Start, ° Stop, °	OD(step) Absolute 15.264 55.264 5.000 1/6° Scan Mode Range Start, ° Stop, °	OD(step) Absolute 15.264 55.264 5.000 1/6° 10.000 Scan Mode Range Start, ° Stop, ° Step, °	OD(step) Absolute 15.264 55.264 5.000 1/6° 10.000 9.900 Scan Mode Range Start, ° Stop, ° Step, °	OD(step) Absolute 15.264 55.264 5.000 1/6° 10.000 9.900 Image: Start, ° Stop, ° Step, ° Specific start, ° Specific start, ° Step, ° Specific start, ° Specific

Remember that α = 90° - χ

X. Pole Figure -5/5Background measurement conditions If Background measurements ==== 18. Background #1 Background #2 were selected, determine Step Receiving Receiving Receiving Receiving Step, ° 20 Angle, ° 20 Angle, ° Geometry the desired conditions Slit #2. mm Slit #2. mm Axis Slit #1, mm Slit #1. mm 5.000 25,7480 10.000 9,900 ✓ 31.7480 10.000 9.900 Reflection α Scan Axis Background Data Acquisition Method Scan Mode Start, ° Stop, ° Step, ° Duration, s Range 1 point (β = Minimum intensity) Fixed time Absolute 1.5 Input your desired *File name* and *File location* here — 20. Run recommended sequence Customize conditions Customize... Save measured data Click **Run** then **OK** when completed = 21. Sample name: Memo: α:34.6 For training with Silicon: Do not Run TD β:89.6 Value : 330234 Calculated scan duration: 34min 15s 400000-Run OK Cancel 22. If the parameters were chosen XRD Measurement properly, you should eventually 300000see intensity peaks appear at Flow sequence completed. • • the appropriate 200000- α and β positions 100000-

XI. Rocking Curve – 1/5

- $\circ~$ This sequence will perform a Rocking Curve using Parallel Beam optics
- 1. Select the *Rocking Curve* package under *XRD Measurement > Package Activities*
- 2. Drag the *Rocking Curve* package into the *Flow Editor* in *Sequence*
- 3. If **Optics Alignment (PB)** and **Sample Alignment (Thin Film)** were previously [±] performed, then skip to **Step 11**
- 4. Left-click on *Optics Alignment (PB)*
- 5. Confirm the following are selected:
 - Optical settings \rightarrow Use default optics
 - Alignment conditions → Full
 - Registration destination \rightarrow User settings
- 6. Click *Run* ______ and then *OK* when completed

XI. Rocking Curve – 3/5

φ needs to be optimized separately!

Alignment Method	Description
Without alignment	Drive each axis to the reflection position specified in the Move origin section. An additional alignment will not be performed.
Quick axis alignment	Drive each axis to the reflection position specified in the Move origin section, and align the ω and χ (or Rx) axes (for symmetric reflection) or φ axis (for asymmetric reflection).
Recursive axis alignment	Drive each axis to the reflection position specific in the Move origin section, and perform the ω scan as driving the χ (or Rx) axis (for symmetric reflection) or φ axis (for asymmetric reflection) step-by-step. Plot the peak intensity vs. the χ (or Rx) or φ axis to the optimized position, then align the ω axis.
Standard axis alignment	Drive each axis to the reflection position specified in the Move origin section, and perform the Rx, Ry scan to face the φ axis to the normal of the lattice plane. Then, align the ω axis.
Precise axis alignment	Drive each axis to the reflection position specified in the Move origin section, and perform the ω scan at four positions ($\varphi = 0^{\circ}$, 180°, 90°, -90°) to face the φ axis to the normal of the lattice plane. Then, align the ω (and χ) axes.

XI. Rocking Curve – 4/5 Run recommended sequence O Customize conditions Customize... Save measured data Proceed to check the Post measurement setting = 16. • Change ω offset so that ω position becomes a half of 2 θ position Click on *Run* —— 17. Post measurement Change ω offset so that ω position becomes a half of 2θ position Calculated scan duration: 8min 6s Axes will be aligned per the chosen 18. OK Cancel Run Alignment method

Ð Package Activities Q XII. Reciprocal Space Map (RSM) - 1/5General C General (BB) General (PB) Reflection SAXS Micro Area This sequence will perform a Reciprocal Space Map or RSM using Parallel Beam optics Ο Pole Figure Residual Stress Select the **RSM** package under **XRD Measurement > Package Activities** = 1. Reflectivity C Rocking Curve RSM Plue Diana 2. Drag the **RSM** package into the **Flow Editor** in **Sequence** Flow Editor ? # × *****+ 3. If **Optics Alignment (PB)** and **Sample Alignment (Thin Film)** were previously performed, then skip to Step 11 ٦ Sequence Drop activities here ? × **Optics Alignment (PB)** 4. Left-click on **Optics Alignment (PB)** = 👛 RSM 0 Optical settings ∇ Incident monochromator: None Optics Alignment (PB) ?) Receiving optics: Slit 5. Confirm the following are selected: ? Image: Sample Alignment (Thin Film) Run alignment for vertical transmission geometry • Optical settings \rightarrow Use default optics Use default optics Customize optics Customize... ? Rocking Curve Pre-Measurement • Alignment conditions \rightarrow Full Alianment conditions 0 A RSM Measurement • Registration destination \rightarrow User settings \bigtriangledown Full Quick (Only receiving optics) Registration destination 6. Click **Run** × PB XRD Measurement Optics attribute: New... and then **OK** when completed User settings O System settings Flow sequence completed. Registration date:

XII. Reciprocal Space Map (RSM) – 4/5	C RSM C ↓□ Optics Alignment (PB) C C
15. Left-click on <i>RSM Measurement</i> i	-¦⊡ Sample Alignment (Thin Film) ⑦ ✓ M Rocking Curve Pre-Measurement ⑦
16. Click on <i>Read Current Positions</i> to align axis	RSM Measurement
RSM measurement conditions	Move to origin
 17. Use the <i>Run recommended sequence</i> or	✓ 2θ, °: 28.4517 ✓ ω, °: 14.2512 ✓ ↓, °: 55.737 ✓ φ, °: 177.2 ✓ B Launch RS Viewer
Speed ORun recommended sequence O Customize conditions	Customize
Scan conditions	
Incident slit, mm: 1.000 Receiving slit #1, mm: 1.000 Receiving slit #2, mm: 1.100 Step Axis Scan Mode Range Start, ° Stop, ° Step, ° Number of Steps ω Relative -3.0000 3.000 0.5000 13	
Scan AxisScan ModeRangeStart, °Stop, °Step, °Speed, °/minAttenuator2θ/ω0D(continuous)Relative-3.00003.00000.5000100.000Auto	

XII. Reciprocal Space Map (RSM) – 5/5

XIII. In-Plane Measureme	\sim	 General (BB) General (PB) Reflection SAXS
 This sequence will perform an In-Plane Measureme Select the <i>In-Plane</i> package under <i>XRD Measure</i> 	κ	 Micro Area Pole Figure Residual Stress Reflectivity Rocking Curve RSM In-Plane
2. Drag the <i>In-Plane</i> package into the <i>Flow Editor</i> in	n Sequence	In-Plane RSM
3. Left-click on <i>Optics Alignment (In-Plane)</i>	Optics Alignment (In-Plane)	Flow Editor ? # ×
 4. Confirm the following are selected: Optical settings → Use default optics → Alignment conditions → Full Registration destination → User settings 	Optical settings Incident monochromator: None In-plane PSC: In-plane PSC 0.5° In-plane PSA: In-plane PSA 0.5° In-plane PSA: In-plane PSA 0.5° Image: State of the state of th	In-Plane ↓ ↓ ○ ↓ ●
5. Click <i>Run</i> and then <i>OK</i> when completed	Registration destination Optics attribute: PB(In-plane) User settings User settings Registration date: 2024-07-10 12:58:06 Post alignment Print out results Ott	Image: Second secon

XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 2/9$

XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 3/9$

- 8. Left-click on *Sample Alignment (In-Plane)* to set *Sample Info*
- 9. Input your *Sample Info* per the dimensions

For training with Silicon: Thickness = 0.5 mm; Width & Height = 5 mm

- 10. Confirm the following are checked:
 - Direct beam half cut alignment
 - Surface normal alignment
 - Put a sample when the sample alignment starts

11. Click *Run*

- 12. If *Sample Alignment (In-Plane)* fails, try changing surface density (e.g. High)
- 13. Wait for the *Flow sequence completed* prompt to continue by clicking *OK* —

<u> </u>	
	+¦□ Optics Alignment (In-Plane)
-	\bigtriangledown
	+l Sample Alignment (In-Plane)
	\bigtriangledown
	A In-Plane Pre-Measurement
	\bigtriangledown
	A In-Plane Measurement
	\bigtriangledown
Sample Aligi	nment (In-Plane)
Consultation for second to a	
Sample information	
Thickness, mm: 0.5 Width, mm: 5.0	Height, mm 5.0
Alignment conditions	Height, mm 5.0
Alignment conditions Attachment and sample plate: RxRy attachment I	nead + 4-inch wafer sample plate
Alignment conditions Attachment and sample plate: RxRy attachment I Direct beam half cut alignment Surface n	nead + 4-inch wafer sample plate ormal alignment
Alignment conditions Attachment and sample plate: RxRy attachment I Direct beam half cut alignment Surface n	nead + 4-inch wafer sample plate
Alignment conditions Attachment and sample plate: RxRy attachment I Direct beam half cut alignment Surface n	nead + 4-inch wafer sample plate ormal alignment : criteria: Standard
Alignment conditions Attachment and sample plate: RxRy attachment l Direct beam half cut alignment Surface n Alignment	nead + 4-inch wafer sample plate ormal alignment : criteria: Standard
Alignment conditions Attachment and sample plate: RxRy attachment l Direct beam half cut alignment Surface n Alignment	nead + 4-inch wafer sample plate ormal alignment : criteria: Standard :nsity: High (> 4.0 g/cm3)

ln-Plane

XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 4/9$

 \bigtriangledown

XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 5/9$

- 15. Recommend the following is checked:
 - Align azimuth (φ scan)
 - Optimize $2\theta_{\chi}$ after azimuth alignment
 - Azimuth realignment after $2\theta_{\chi}$ optimization
 - Optimize incident angle (ω scan)

In-Plane	(?) ×		
In-plane pre-measurement conditions Align azimuth (φ scan) Optimize 2θχ after azimuth alignment Azimuth realignment after 2θχ optimization Optimize incident angle (ω scan)	Incident angle ω, °: 0.3000 2θ, °: 0.3000 Read Current Incident Angle	 ✓ Move to origin ✓ 2θχ, °: 47.3030 ✓ φ, °: 68.652 Read Current Positions 	

• Note: The following is for training purposes to learn how to move goniometer axes for In-Plane

16.	16. Open the RS Viewer and find the Si (2 -2 0) plane —		Measurement		?		
10.			Geometry: In-plane X-ray target: Cu-Kα1 Wavelength, nm: 0.1540593				
			Reflection information				?
			Layer: Si(Sub)				
			Origin: 2 -2 0 🗸	Min. F (rel.) to show, %: 0 💭	Highlighted: 2 -2 0	Select	Clear
		11	20B:47.30 F :72.10 F ² :5	197.73 Incident angle: 9.9522E-16 Reflect	ted angle: 9.9522E-16		
17.	Remember to select <i>In-plane</i> for Geometry				Scan type:	ω step, 2θ/ω sca	an 🗸
1/.				Origin	Abs/Rel	Start	Stop
			ω,°: 0.0000 🗘	I	Relative 🗸	0.0000 🗘	0.0000 🗘
			2θ/ω,°: 0.0000 🗘 —	I	Relative 🗸	0.0000 🗘	0.0000 🗘
18.	Click on <i>Move Axes</i>		χ,°: 0.0000 🗘	I	Relative 🗸	0.0000 🗘	0.0000 🗘
			φ,°: 68.6515 🗘	l	Relative 🗸	-7.5000 🗘	7.5000 🗘
			2θχ,°: 47.3030 🗘 —		Relative 🗸	-15 0000	15.0000 🗘
19.	The <i>Goniometer</i> will now reposition the axes per the values described here			SH	how area Reset	Move Axes	Send Area

XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 6/9$

Relative

Absolute

ω

0.0000

3.0000

1.0000

0.0200

23. Click **Run** and then **OK** when completed

Maximum intensity

 \sim

5.000

1.0000

XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 7/9$

- 20. Once completed, the optimal ϕ and $2\theta_{\chi}$ parameters should be determined
- 21. If the parameters are not clearly optimized, check if the search is wide enough or if the initial parameters were appropriate
- 22. Left-click on *In-Plane Measurement*

23. Use the *Run recommended sequence* or click *Customize conditions*

XIII. In-Plane Measurement or $2\theta_{\gamma}/\phi - 8/9$

Click on **Read Current Positions** so that 24. both the $2\theta\chi$ and ϕ are updated here if *Move to origin* is checked

Manual exchange slit conditions 25. Adjust the following parameters if desired: In-plane PSC: In-plane PSA: In-plane PSA 0.5° In-plane PSC 0.5° \sim • Start \sim Length-limiting slit: 10 mm Read Current Optics Stop Scan conditions Step Incident slit, mm: 0.100 • Speed Speed, °/min Scan Axis Scan Mode Range Start. ° Stop, ° Step, ° ✓ 0D(continuous) 42.000 Absolute 52.000 0.096 5.00 2θχ/φ For training with Silicon: See example Calculated scan duration: 2min Set Recommended Values OK Save measured data 26. Input your desired *File name* and = File location here asurement Data\Manager\Silicon Wafer Training Manual Scans\Si Wafer 011 In Plane Pre Meas.rasy Sample name: Memo:

In-plane measurement conditions

Step: Fine Normal Coarse

Use recommended incident angle of the sample

Speed: Slow Normal Fast

Sample: Inorganic

selected above

 \sim

(2)

Attenuator

Auto

 \sim

Cancel

Move to origin

Read Current Positions

✓ 2θ_X, °: 0.0000

🗸 φ, °: 0.000

Customize - In-Plane Measurement

Set incident angle

Read Current Incident Angle

×
XIII. In-Plane Measurement or $2\theta_{\chi}/\phi - 9/9$

XIV. In-Plane Azimuth or Phi(ϕ) Scan – 1/2 Part Activities Ð Q * • This sequence will perform an In-Plane Azimuth or Phi(ϕ) Scan using Parallel Beam optics Loop(Mapping) 凸 Loop(XY) 1. The following assumes that the *In-Plane Pre-Measurement* has already been performed. Measurement C Message 2. Select the *Measurement* under *XRD Measurement > Part Activities* Flow Editor ? # × ***** 3. Drag the *Measurement* into the *Flow Editor* in *Sequence* 🚊 Sequence \bigtriangledown Drop activities here Left-click on *Measurement* = 4. 🚊 Sequence \bigtriangledown 5. Select ϕ for **Scan axis** = ? Measurement \bigtriangledown $\textcircled{\baselineta}{\baselineta}$ × Measurement 6. Configure the following: Measurement conditions • Start Stop Attenuator: Hold O Auto O Fix Scan axis: 0D(continuous) Interruption threshold setting Step Scan mode: Speed 110.000 Start, °: Read Do not close shutter Stop, °: 112.000 Read Step, °: 0.100 Read Speed, °/min: 5.00 Read

XIV. In-Plane Azimuth or Phi(ϕ) Scan – 2/2

- Input your desired *File name* and *File location* here
- 8. Click *Run* and then *OK* when completed

Save measured data

Post measurement

Run

OK

Cancel

XRD Measurement

XRD Measurement

XRD Measurement

XRD Measurement

XRD Measurement

XRD Measurement

 If the parameters were chosen properly, you should eventually see a series of peaks appear at the appropriate φ positions

\mathbf{V}	in-Plane Pole Figure	0		
X۱	/. In-Plane Pole Figu	+ Optics Alignment (In-Plane)	(?)	
	0			
C			+ Sample Alignment (In-Plane)	(?)
6.	Left click In-Plane Pole Figure Measurer	nent —	A In-Plane Pre-Measurement	0
				• •
			In-Plane Pole Figure Measurement	•
7.	Remember to input the following param	eters!	\bigtriangledown	
	• Crystal system (i.e. Cubic)	In-Plane Pole Figure Measurement	< I	
	• Index (i.e. 2 - 2 0)	Sample information		
	• <i>Measurement angle</i> (i.e. $2\theta_{\chi}$)	Thickness, mm: 0.50000 Cystal system:]	
		L near absorption coefficient, 1/cm: 0.000		
		In-plane pole figure measurement conditions		
		h I Background measurement Not run		
8.	Choose if any	Index: 2 -2 0 Measurement angle, • 47.3235		
	Background measurements —			
	will be run if desired	Step: OFine Standard OCoarse		
	will be run il desired	Speed: Slow Standard Fast		
		H		
		Run recommended sequence Customize conditions	istomize	
		Save measured data		
9.	Choose to Run recommended sequence		6- 011 In Diana Dala Eirana	
	or Customize conditions	File name: anager\Silicon Wafer Training Manual Scans\Si W	ater UTT IN Plane Pole Figure.ras	
		Sample name:		
		Memo:		

XV. In-Plane Pole Figure -3/4

- 10. Depending on your **Step** chosen, be aware that it may not be sufficient so choose the following carefully for α scan axes!
 - Start
 - Stop
 - Step
 - Speed

(Note: Will the peaks appear for α and β if arbitrarily chosen?)

11. If *Background measurements* were selected, determine the desired conditions

Background measurement conditions Background #1 Background #2 Receiving Receiving Step Receiving Receiving Step, ° 20 Angle, ° 20 Angle, ° Geometry Axis Slit #1, mm Slit #2, mm Slit #1, mm Slit #2, mm ✓ 31.7480 Reflection 5.000 25.7480 10.000 9.900 10.000 9.900 α Scan Axis Background Data Acquisition Method Scan Mode Start. ° Stop, ° Step, ° Duration, s Range 1 point (β = Minimum intensity) Fixed time Absolute 1.5

Data measurement conditions

Minimum ω angle, °: Incident slit, mm:		0.5000		Receiving slit #1, mm: Receiving slit #2, mm:			Attenuator:	Auto 🗸
Scan Axis		Scan Mode	Range	Silt #2, mm: Start, °		itop. °	Step, °	Speed, °/min
α	0D(st	ep)	Absolute	0.00	20.0	0	5.00	
β	0D(co	ontinuous) 🗸 🗸	Absolute	0.000	360.	000	3.000	150.000

Remember that $\alpha = \chi$ for in-plane!

XV. In-Plane Pole Figure -4/4

12.	Input your desired <i>File name</i> and <i>File location</i> here ———	Save measured data
13.	Click <i>Run</i> then <i>OK</i> when completed	File name: anager\Silicon Wafer Training Manual Scans\Si Wafer 011 In Plane Pole Figure.rasx
19.	XRD Measurement	Memo:
	Flow sequence completed.	Calculated scan duration: 54min 47s Run OK Cancel

For training with Silicon: Do not Run

14. If the parameters were chosen properly, you should eventually see a series of peaks appear at the appropriate α and β positions

20x, °

$\lambda \Lambda$	// $/$ $/$ $/$								🔋 In-Plane RSM	\bigtriangledown	0
XΛ	/I. In-Plane RSM $- 2/3$								Optics Alignment (In-P	*	(?)
									10 Sample Alignment (In-	▽ Plane)	(?)
6.	Left click <i>In-Plane RSM Measurement</i> =								▲ In-Plane Pre-Measuren	\bigtriangledown	•
7.	Confirm <i>Move to origin</i> is checked								M In-Plane RSM Measure		9 ?
				Custon	nize	- In-Plane	RSM Meas	surement		?) ×
8.	Click Read Current Positions and	In-plane RSN	1 measurement conditi	ons			Incident angle		Move to	origin	
	<i>Read Current Incident Angle</i> to set the proper <i>Origin</i>										
9.	Configure the following:	Manual e	xchange slit conditions								
	• Start				_						
	• Stop • Step	In-plane PSC Length-limiti	ing slit: 10 mm	5	~	v in plane	6A: In-plane l	PSA 0.5° Read Curre	nt Optics		
	• Speed	Scan conditio		1							
		Incident slit,									
		Step Axis	Scan Mode 0D(step)	Range Relative		Start, ° -3.000	Stop, ° 3.000	Step, °	Number of St	eps	
		φ									
		Scan Axis	Scan Mode	Range		Start, °	Stop, °	Step, °	Speed, °/min	Attenua	tor
		2θχ/φ	0D(continuous) 🗸	Relative	~	-3.000	3.000	0.096	5.00	Auto	

XVI. In-Plane RSM - 3/3

10.	Input your desired <i>File name</i> and <i>File location</i> here ———	Save measured data
		File name: anager\Silicon Wafer Training Manual Scans\Si Wafer 011 In Plane Pole Figure.rasx
11.	Click <i>Run</i> then <i>OK</i> when completed	Sample name:
	XRD Measurement ×	Memo:
	Flow sequence completed.	Calculated scan duration: 54min 47s Run OK Cancel

For training with Silicon: Do not Run

XVII. Monochromator Ge(22	20)x2 - 1/2
• This sequence will show how to use Monochromator Ge(2	220)x2 using Parallel Beam optics
1. Left-click on <i>Optics Alignment (PB)</i> tab to select optics	Optics Alignment (PB) Optical settings
2. Select <i>Ge(220)x2</i> for the <i>Incident monochromator</i> —	Incident monochromator Ge(220)x2 Receiving optics: Slit
3. Confirm <i>Use default optics</i> is selected under <i>Optical se</i>	Run alignment for vertical transmission geometry Use default optics Customize optics
4. Confirm <i>Full</i> is selected under <i>Alignment conditions</i>	Alignment conditions Full O Quick (Only receiving optics)
5. Confirm <i>User settings</i> is selected, then click <i>Run</i>	Registration destination
6. A <i>Smart Message</i> will appear indicating all the optics a attachments that need to be <i>removed</i> (indicated in REI and those that need to be <i>installed</i> (indicated in GREE)	D) System settings
	Run OK Cancel

XVII. Monochromator Ge(220)x2 - 2/2

To remove the *IPS adaptor* and install the *Ge(220)x2* perform the following: 7.

XVIII. Grazing Incidence XRD or GIXRD – 2/5

6.	Confirm the following are selected:		Optics Alignment (PB)
	• Optical settings \rightarrow Use default optics		Optical settings
	• Alignment conditions \rightarrow Full		Incident monochromator: None
	• Registration destination \rightarrow User settings		Receiving optics: Slit Run alignment for vertical transmission geometry
			Use default optics Customize optics Customize
7.	Click Run and then OK when completed		Alignment conditions Full Ouick (Only receiving optics)
		🤹 General (PB)	Registration destination
8.	Left-click on Optics Alignment (PB) – Receiving PSA 0.5 tab	-↓□ Optics Alignment (PB) ⑦ -↓□ Optics Alignment (PB) - Receiving PSA 0.5 ⑦ -↓□ Sample Alignment (Powder, Bulk) ⑦	Optics attribute: PB Image: System settings Image: System settings Registration date: Image: System settings
9.	Change the Receiving optics to PSA 0.5 ^o and check Quick (Only receiving optics)	General Measurement ()	Run OK Cancel XRD Measurement ×
10.	Click Run and then OK when completed as well	Optics Alignment (PB) Optical settings Incident monochromator: None Receiving optice PSA 0.5° Securiting optice PSA 0.5° Output Customize optics Customize Alignment for vertical transmission geometry Customize optics Customize	Flow sequence completed.

Quick (Only receiving optics)

XVIII. Grazing Incidence XRD or GIXRD – 3/5

 set Sample Info Sample alignment conditions Attachment and sample plate to RxRy attachment head + 4-inch wafer sample plate Set registered position without alignment Curved sample (Z scan only) Flat sample Sample height, mm: 5.0 	Bulk) 🕐 🗙
 12. Set the Attachment and sample plate to RxRy attachment head + 4-inch wafer sample plate Set registered position without alignment Curved sample (Z scan only) Flat sample 	
RxRy attachment head + 4-inch wafer sample plate O Set registered position without alignment O Curved sample (Z scan only) Image: Set registered position without alignment	afer sample plate
Curved sample (Z scan only) Flat sample	
Sample thickness, mm: 0.5	
14. Input your <i>Sample Info</i> per the dimensions	tomize
Incident direction of Height x-ray when $\phi = 0 \text{ deg}$ Width	
Thickness	OK Cancel
	XRD Measurement ×
15. Click Run and then OK when completed	w sequence completed.

XVIII. Grazing Incidence XRD or GIXRD –	\bigtriangledown						
16. Left-click on <i>General Measurement</i>							
17. Left-click on the drop down for <i>Manual exchange slit conditions</i>							
18. Click on the box for <i>Manual exchange slit conditions</i>							
	rement conditions						
20. Select 2 θ for the Scan Axis	nual exchange slit conditions						
21. Input desired <i>Start, Stop, Step</i> , and <i>Speed</i> values	t Soller slit: Soller slit 5.0° -limiting slit: 2 mm ing optics: PSA 0.5° ing Soller slit: Soller slit 5.0°						
22. Set both the <i>Receiving Slit #1</i> and <i>#2</i> to <i>20</i> and <i>20.1 mm</i> ; respectively	Read Current Optics						
Measurement conditions							
Attachment base: X\u03c6Z attachment V Attachment head: Attachment without movable axis							
Exec. Scan Axis Range Start, ° Stop, ° Step, ° Speed, °/min Incident Receiving Receiving Slit #1, mm Slit #2, mm	Attenuator Comment Ontions						
1 ✓ 2θ ✓ Absolute ✓ 48.0000 70.0000 0.0100 12.0000 1.000 20.000 20.100	✓ Open ✓ ✓ Set						
2 ✓ 20 ✓ Absolute ✓ 48.0000 70.0000 0.0100 12.0000 1.000 20.000 20.100 3 ✓ 20 ✓ Absolute ✓ 48.0000 70.0000 0.0100 12.0000 1.000 20.000 20.100	✓ Open ✓ Set ✓ Open ✓ Set						

XVIII. Grazing Incidence XRD or GIXRD – 4/5

23. Left-click on *Set...*

		conditions													
Attachment base: χφΖ attachment							 Attachment head: Attachment without movable axis 								
	Exec.	Scan Axis	s Rar	ige =	Start, °	Stop, °	= Step, ° =	Speed, °/min =	Incident Slit, mm 😑	Receiving Slit #1, mm 😑	Receiving Slit #2, mn	Attenuator =	Comment	= Options	=
1	\checkmark	20	✓ Abso	lute 🗸	48.0000	70.0000	0.0100	12.0000	1.000	20.000	20.100	V Open V		Set	^
2	\checkmark	20	✓ Abso	lute 🗸	48.0000	70.0000	0.0100	12.0000	1.000	20.000	20.100	V Open V		Set	
3	\checkmark	20	✓ Abso	lute 🗸	48.0000	70.0000	0.0100	12.0000	1.000	20.000	20.100	V Open V		Set	
Se	Set ω as the Axis								Options - G	eneral Me	easurement			?	
					Attachment base: χφZ attachment V Attachment head: Attachment without movable axis						\sim				
Se	et th	e Oric	nin to	desii	red value	<u>ا</u> ا د		xis	Action	Origin ((Center) (Oscillation Range (±)	Start	Stop	Spee
	Set the <i>Origin</i> to desired value typically ranging from 0.1 - 1 °				ω	✓ Move to ori	gin	√ 0.1000	0.						

- 26. You may wish to vary the ω values to see the impact on the angle to your desired peak
- 27. Clicking on the = box will *Copy* the value from the top row if you choose to keep the values the same for each row

XVIII. Grazing Incidence XRD or GIXRD – 5/5

Substrate Peak

28. Click on *Run* then *OK* when completed

Separate mea	asured file		
File name:			
Sample name:			
Memo:			
Run real-time se			Car
Run real-time se	earch match	oleted.	Car
Run real-time se	earch match		Car
Run real-time se	earch match ration: 6min 31s	OK	Car

29. You may wish to run different values of ω for comparison

8. Close the *Software* by clicking on the *X* and record your time and make any notes in the *Sign-In Sheet*

				Part Activities 🛛 🔒 🛊 🔍
X	X. Overnight Scan +	Shutdown – 1	/1	ら Loop(Mapping) ら Loop(XY)
/ \ /			-/ -	Measurement
				🖞 Message
0 T	his sequence is for planning an overnight n	neasurement with a shutdowr	ו	ကြာ One Shot
				C Oscillation
1.	If you plan on performing an Overnight S	can and won't return to shute	down manually.	6 Rotation
			, , , , , , , , , , , , , , , , , , ,	🕒 Send Mail
	you may perform the following steps			Set Offset Sutdown
				0
			Pole Figure	🚊 Pole Figure 🚺
2.	Find <i>Shutdown</i> under <i>Part Activities</i> —	<u>–</u> 1	$\overline{\nabla}$	
			+10 Optics Alignment (BB)	+ Optics Alignment (BB)
C	Drag Chutdawa under the desired overni	abt coop	+ Sample Alignment (Powder, Bulk) (?)	+¦_ Sample Alignment (Powder, Bulk)
3.	Drag Shutdown under the desired overni	ght scan	✓ Pole Figure Measurement	\bigtriangledown
	(e.g. Pole Figure Measurement)	Shutdown 🕐 🗙		A Pole Figure Measurement
				Shutdown (?)
		XG settings		
4.	Left-click on Shutdown tab to confirm	O Do not change		· · · · · · · · · · · · · · · · · · ·
4.		• XG off	🃮 Pole Figure	0
	XG off and	Set to minimum	+la Optics Alignment (BB)	(\tilde{r})
	Move to home position	○ Vacuum off		
			-In Sample Alignment (Powder, Bulk)	\bigcirc
	are checked and click OK	Axis position	\bigtriangledown	
			Pole Figure Measurement	
		O Do not move	\bigtriangledown	
5.	Left-click on the selected Step	Move to home position	6 Shutdown	
	·	Run OK Cancel		
C	Laft aliak an Dun Flour dran dawn and aa	Last Due from Colostad Dant		
6.	Left-click on Run Flow drop-down and se	lect Run from Selected Part		Run Load DB Cre Flow Toata Browser Rep
				🖡 Run Flow Ctrl+F5
7.	The <i>Cleanup</i> of your sample must be con	npleted next day by 10:00am!		Run Selected Part Ctrl+F6
	(see XIX. Cleanup and Shutdown Steps 6	. , ,		➡ 🖡 Run from Selected Part Ctrl+F7

TS-A. Initial Power Up

• This sequence is only used for Initial Power Up (power completely off)

- 1. The following should ONLY be performed if instructed by the *Lab Manager*
- 2. Toggle the *Safety Key* to the right and release =
- 3. Cabinet will perform *Power Up* sequence
- 4. The *Power ON* lights will illuminate

TS-B. Hypix Detector Troubleshooting

 $\,\circ\,$ This sequence is only used for troubleshooting the Hypix Detector

- 1. If the *Hypix Detector* needs to be remotely connected to troubleshoot...
- 2. Click on *Remote Desktop Connection* and connect to **192.168.126.70**
- 3. No password needed to access
- 4. Provides status of detector
- 5. Click on *Operate -> Restart* to reset *Alarms* if necessary

Your credentials did not work	
The credentials that were used to connect to 192.168.126.70 dic not work. Please enter new credentials.	
DIC AVU	
RIGAKU	
Password	
Domain: ENGR	
Please enter a user name and p	bassword.
More choices	
More choices	

END OF SLIDES