Instron Training Notebook

Lab Manager: Dr. Perry Cheung MSE Fee-For-Service Facility Materials Science and Engineering University of California, Riverside

August 7, 2017 (rev. 2)

Before you begin...

Complete the required safety training modules on UC Learning

- Laboratory Safety Orientation (Fundamentals) 2013
- Hazardous Waste Management
- Compressed Gas Safety
- Submit a copy of your Training Transcript to Lab Manager
- Review the MSE 150 250 309 Policies and Regulations
- Fill out the MSE 150 250 309 Authorization Form with PI signature
- Provide your ENGR user name to Lab Manager to set up Faces account
- Arrange a time for training with Lab Manager
- Schedule your reservation on Faces for your training

Instron Operation

Α.		GUI	
В.		Control Panel	
C.		Console Control	
D.		Preparation	
E.		Removing Load Cells	
١.		Installing Load Cells	
	A.	50 kN	
	Β.	500 N	
	C.	10 N (Huinan Lui Group)	
II.		Tension Tests	
	A.	Jaw Faces	
	Β.	Wedge Grips	
	C.	Preloading	
	D.	Specimen Loading	
	E.	Extensometer (optional)	

III. Compressio	on Tests
-----------------	----------

- Top Platen Α.
- Β. **Bottom Platen**
- **Flexure Tests** IV.
 - Lower Anvils Α.
 - **Upper Anvils** Β.
 - C. Alignment
 - Specimen Loading D.
 - Ε. **Deflectometer** (optional)
- **Configuring Test** V.
- VI. **Running Test**
- VII. Cleanup

- a) Starting a New Sample enables you to either select an existing test method or create a method "on the fly"
- b) Specify the name of the file the test data will be stored within and begin running tests

• Continue a Sample

- a) Continuing a Sample allows you to open a sample file that had been previously created and test additional samples
- b) This option will allow you to review the data from a previously created Sample

2. Method Button

- Create a Method
- Choose a Method

a) Make changes to the test parameters and either save those changes back to the original test method file (*Save*) or to a new test file (*Save As*)

A. GUI – 2/2

3. Analysis Button

- Choose a sample to open
- Choose a test method from which to load calculation and result parameters
- Analyze and recalculate test data in a sample

4. Help Button

• Click to open the Help system

- 5. Exit Button
 - Click to exit the software

B. Control Panel – 1/4

- 1. Power Indicator lights
 - *Frame Standby* Frame is not set to move
 - Frame Ready Test system is ready for operation

2. Start Test button

- Press this button AFTER setting test parameters to begin test
- Test in Progress indicator will be illuminated showing direction of *Crosshead* movement

3. Stop Test button

- Press this button to stop *Crosshead* during or end of test
- Test Stopped indicator will be illuminated showing test has stopped but *Crosshead* has not returned to the gauge length position

POWER

FRAME

READY

STANDBY FRAME

B. Control Panel – 2/4

- 4. Specimen Protect button
 - On Protects specimen from overloads set by software
 - **Off** No protection on specimen from any possible overloads

5. **Reset GL** button

- Press this button to set the current position of the *Crosshead* as the gauge length or zero extension position
- Pressing *Return* button afterwards will return *Crosshead* to this gauge length position

Return button **6**.

- Press this button to move *Crosshead* back to gauge length position
- *Return in Progress* indicator will be illuminated to show Crosshead is returning to gauge length position

WARNING: DO NOT PRESS THIS BUTTON UNLESS YOU ARE READY FOR THE CROSSHEAD TO **RETURN TO GAUGE LENGTH POSITION OF 0.000 INCHES!**

INSTRON

ON

SPECIMEN

PROTECT

B. Control Panel – 3/4

7. $\Delta Jog Up$ button

- Press this button to move the *Crosshead* upward (in tension)
- Holding the button increases the speed linearly, up to a maximum speed, until you release the button

8. *∇Jog Down* button

- Press this button to move the *Crosshead* downward (in compression)
- Holding the button increases the speed linearly, up to a maximum speed, until you release the button
- 9. Fine Jog wheel
 - Turn thumbwheel to slowly position Crosshead
 - Use to set an accurate zero extension point
 - Use to set a precise grip position for loading specimens

B. Control Panel – 4/4

- 10. Toggle button
 - Use to toggle between the Soft Keys and the Live Displays
- 11. "1" Balance Load
 - Balances load to ~ 0.0 N

12. "**2**" – **Balance Strain 1**

- Balances strain to ~ 0.0 %
- Meaningful only when using *Extensometer*

13. "**3**" – **Balance All**

 Balances loads, strain, and resets gauge length

14. "4" – Zero Extension (or Reset Gauge Length)

• Resets extension (or gauge length) back to 0.0 mm

C. Console Control – 1/1

1. Console Settings

• Click this icon to access the control panel settings and configure the general *Live displays*, *Soft Keys*, frame settings and grips

2. Calibration of Transducers

• Calibration of transducers (i.e. load cell) is automatic and its settings should **NOT** be changed

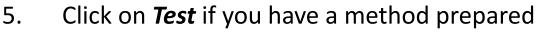
3. Software Limits

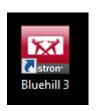
- Software limits are assigned to each transducer and need to be CONFIRMED
- These limits are separate from methods and are independently set

4. Transducer Setup for Extensometer

 Extensometer settings should NOT be changed and values are automatically assigned

D. Preparation – 1/4

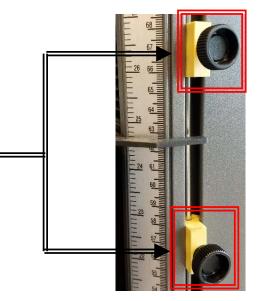

- 1. Double-click on the *Instron Bluehill 3* icon
- Log in with User: *mseinstron* and Password: *mseffs*
- Log in X User: Password: OK Exit


Test

3. The *Home Screen* will appear

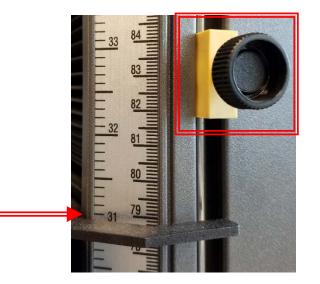
INSTRON®

Load [N] -21.340 Strain 1 [%] -2.4426 Extension [mm] 268.85 R D Admin User ? **몽**고 X Help አለ Method Exit Test Click on *Method* to configure a new or existing method 82 4. Method 5



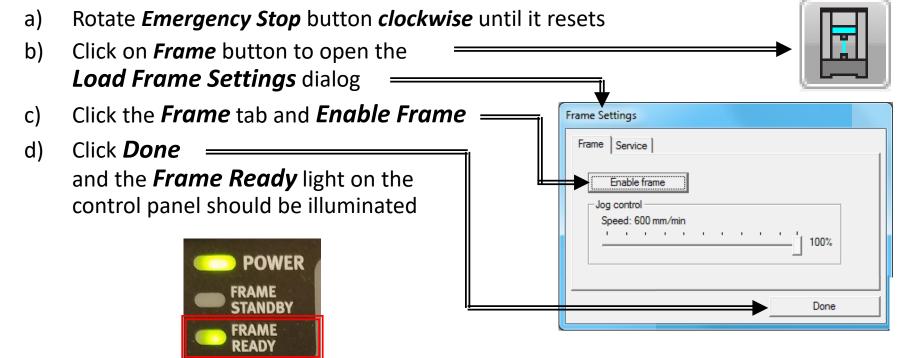
D. Preparation – 2/4

- 6. Check if the Instron is powered **ON** via the control panel
- 7. If not, turn to **ON** at the back of the Instron
- 8. Check if the *Crosshead* is sufficiently high enough to install the desired load cell, grips, or fixtures on measurement scale
- 9. Always set limits before operating the Instron and ensure appropriate limits are enabled before moving the *Crosshead*
- 10. Loosen and move the slides to the desired positions and tighten the thumb screws



D. Preparation – 3/4

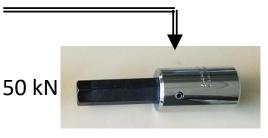
- 11. Raise the *Upper Limit Stop* on the measurement scale first for desired installation for:
 - a) Load Cell > 16"
 - b) Tension Tests > 31"
 - c) Compression Tests > 22"
 - d) Flexure Tests > 25"



- 12. Press the **Jog Up** Δ on the control panel to raise the **Crosshead** to the appropriate height on the measurement scale for desired installation:
 - a) Load Cell > 16"
 - b) Tension Tests > 31"
 - c) Compression Tests > 22"
 - d) Flexure Tests > 25"

D. Preparation -4/4

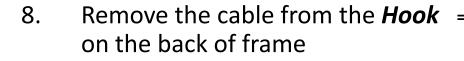
- 13. Press the *Emergency Stop* button to stop ______ the test immediately when a condition develops that:
 - Could affect the safety of persons operating system
 - Could damage the load frame or test fixtures
- 14. To reset the *Emergency Stop* button and re-enable load frame:

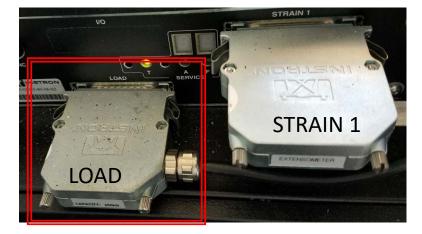

E. Removing Load Cell – 1/2

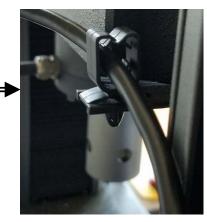
1. Remove the installed *Load Cell* using the *Breaker Bar*

- 2. Install the appropriate *Hex Adapter* to *Breaker Bar* for installed *Mounting Screw*
- Push counter-clockwise against the Breaker Bar until Mounting Screw "breaks" and becomes loose
- 4. If necessary, spray a little of *WD-40* at top of *Mounting Screw* to provide lubrication ——
- 5. Remove the *Hex Adapter* from *Breaker Bar*
- 6. Support the *Load Cell* with one hand while unscrewing the *Mounting Screw* with your other hand

NOTE: DO NOT LET THE LOAD CELL DROP AS YOU UNSCREW IT!

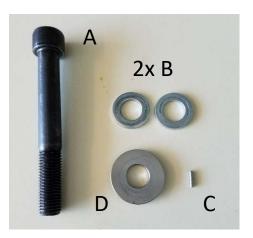

500 N and 10 N

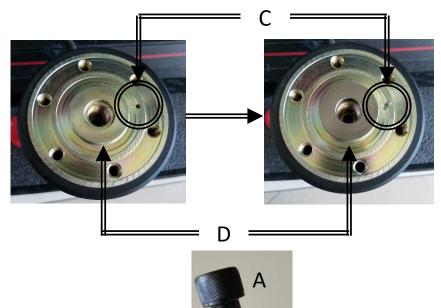



E. Removing Load Cell – 2/2

7. Carefully detach the *Load Cell Cable* from *LOAD* connector on controller

9. Carefully place the uninstalled *Load Cell* back in its appropriate *Storage Box*




I.A. 50 kN Load Cell – 1/4

- 1. Locate the necessary components
 - A. Mounting Screw
 - B. 2 Large Washers
 - C. Anti-rotation Pin
 - D. Locating Ring

 Insert the Anti-rotation Pin (C) and Locating Ring (D) into top of Load Cell

3. Assemble the *Mounting Screw (A)* and *2x Washers (B)*

2x B

I.A. 50 kN Load Cell – 2/4

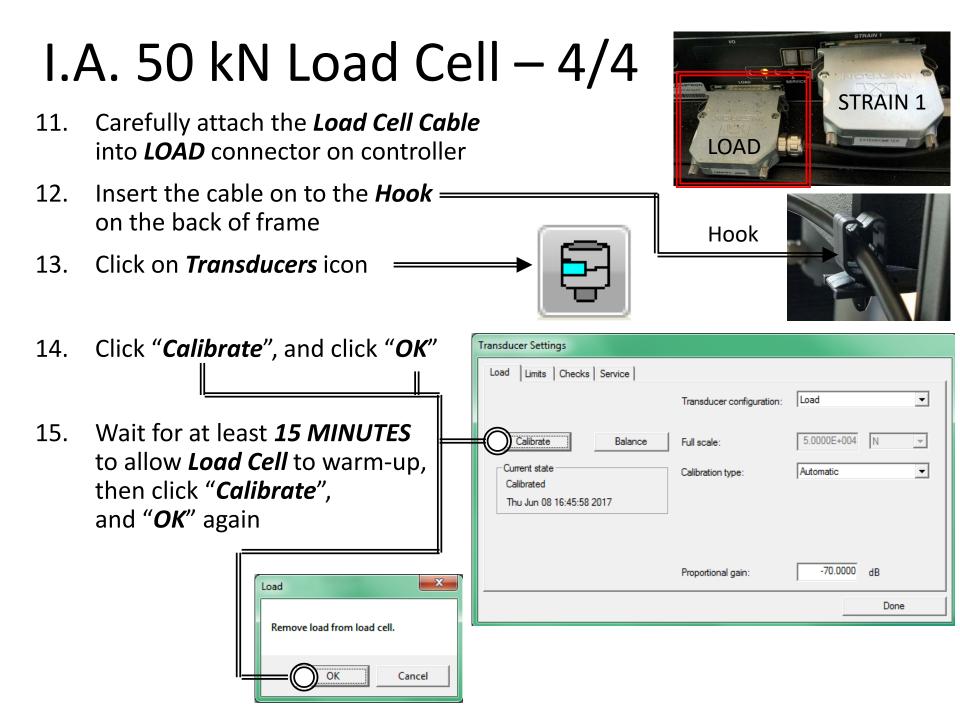
- 4. Lubricate the *Mounting Screw* threads with *WD-40* and wipe off any excess with a towel
- 5. Place the *Load Cell* against bottom of *Crosshead*
- Align the Load Cell so Anti-rotation Pin will fit into slot underneath Crosshead and cable is toward the back

- 7. Ensure that *Anti-rotation Pin* and *Locating Ring* fit securely in place against *Crosshead* and *Load Cell*
- 8. Insert the *Mounting Screw* on to top of *Crosshead*

B Crosshead Load Cell

I.A. 50 kN Load Cell – 3/4

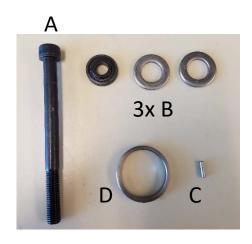
- 9. Tighten the *Mounting Screw* by hand so that it is secure against the *Load Cell*
- 10. Install the appropriate *Hex Adapter* to *Torque Wrench*

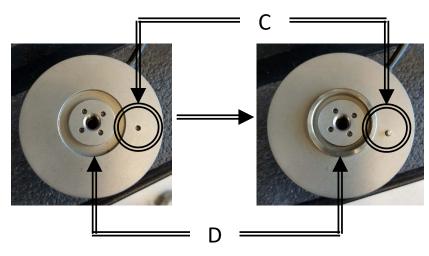


9. Further tighten the *Mounting Screw* with the *Torque Wrench*

10.

Torque down to 148 ft-lb (**200 N-m**) or as high as possible using the **Torque Wrench**

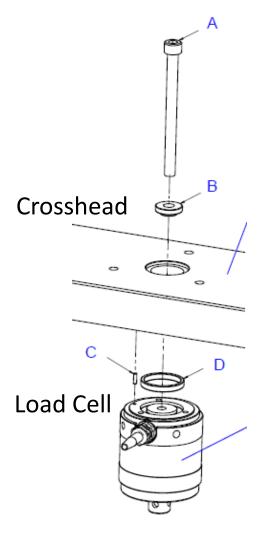



I.B. 500 N Load Cell – 1/4

- 1. Locate the necessary components
 - A. Mounting Screw
 - B. Small + 2 Large Washers
 - C. Anti-rotation Pin
 - D. Locating Ring

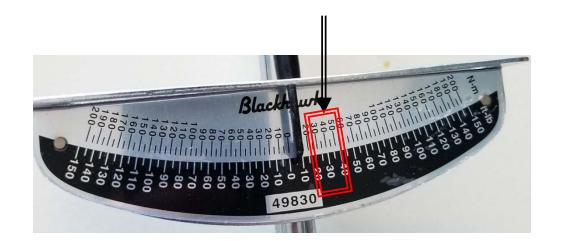
 Insert the Anti-rotation Pin (C) and Locating Ring (D) into top of Load Cell

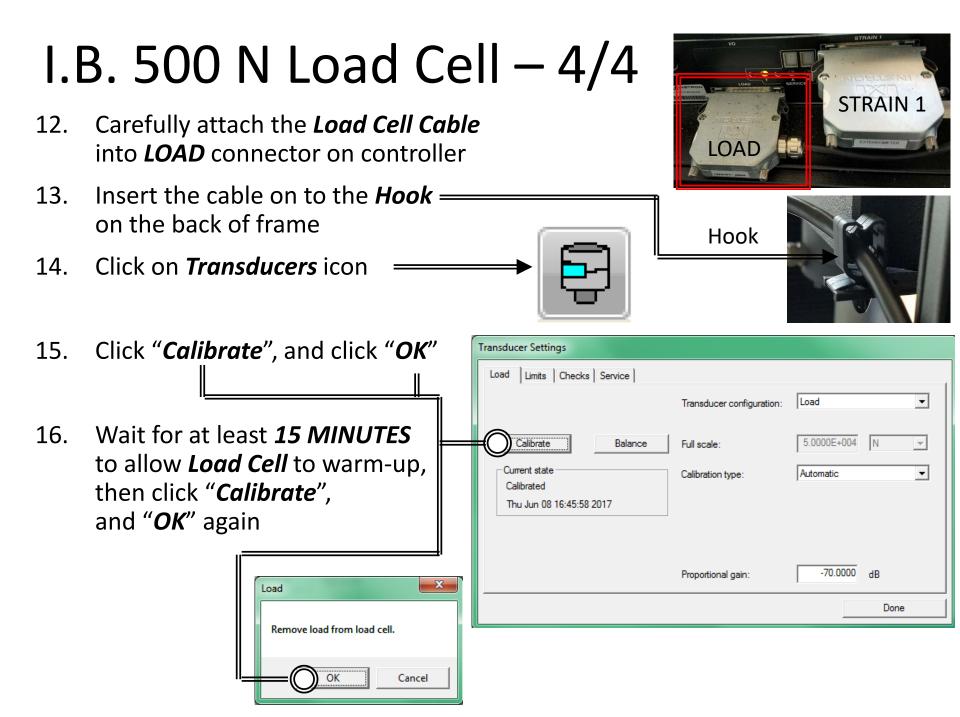
3. Assemble the *Mounting Screw (A)* and *2x Washers (B)*


I.B. 500 N Load Cell – 2/4

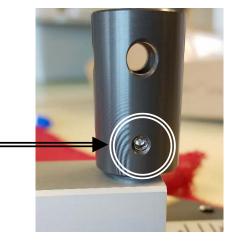
- 4. Lubricate the *Mounting Screw* threads with *WD-40* and wipe off any excess with a towel
- 5. Place the *Load Cell* against bottom of *Crosshead*
- Align the Load Cell so Anti-rotation Pin will fit into slot underneath Crosshead and cable is toward the back

- 7. Ensure that *Anti-rotation Pin* and *Locating Ring* fit securely in place against *Crosshead* and *Load Cell*
- 8. Insert the *Mounting Screw* on to top of *Crosshead*



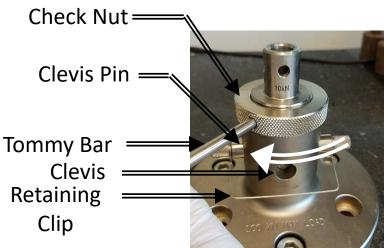

I.B. 500 N Load Cell – 3/4

- 9. Tighten the *Mounting Screw* by hand so that it is secure against the *Load Cell*
- 10. Install the appropriate *Hex Adapter* to *Torque Wrench*


- 9. Further tighten the *Mounting Screw* with the *Torque Wrench*
- 10. Torque down to 30 ft-lb (40 N-m) using the Torque Wrench

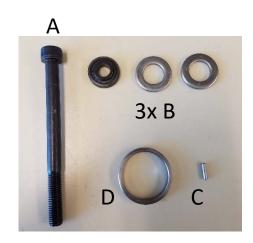
I.C. 10 N Load Cell – 1/5

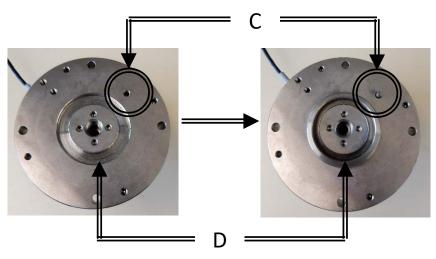
- Before installing the *Load Cell*, ensure that the
 4 Set Screws holding the *Adapter* are securely tightened
- 2. Check that the *Compression Spring* is placed inside the bottom *Base Adapter*
- 3. Position *O Adapter Check Nut* until it is close to the top
- 4. Install the *O Adapter* in to *Base Adapter*
- 5. Align the **O Adapter Clevis** to the **Clevis** in the **Base Adapter**
- 6. Insert the ½" Clevis Pin through the Clevis and into the Base Adapter
- 7. Attach the *Retaining Clip*
- 8. Hand tighten the *Check Nut* turning *clockwise* towards the *Base Adapter*
- 9. Use the provided *Tommy Bar* to further tighten, but DO NOT OVERTIGHTEN!



Compression Spring

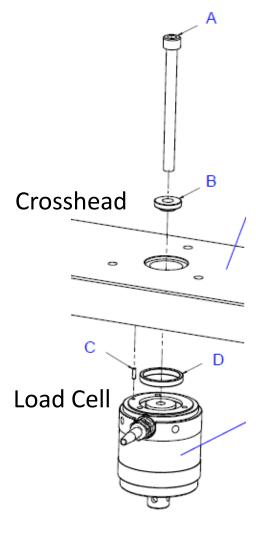
Bottom Base Adapter




I.C. 10 N Load Cell – 2/5

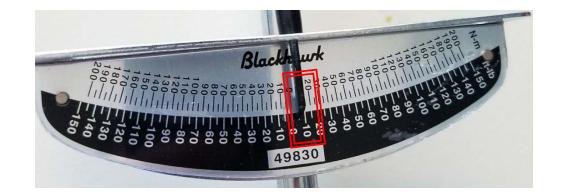
- 10. Locate the necessary components
 - A. Mounting Screw
 - B. Large + Small Washers
 - C. Anti-rotation Pin
 - D. Locating Ring

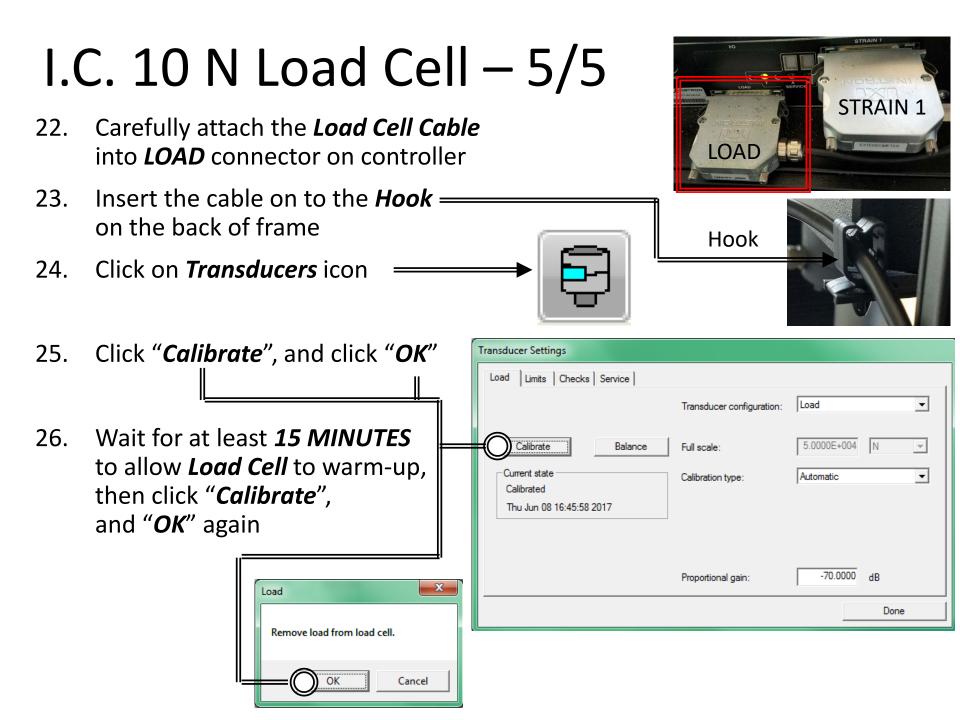
11. Insert the *Anti-rotation Pin (C)* and *Locating Ring (D)* into top of *Load Cell*


I.C. 10 N Load Cell – 3/5

- 13. Lubricate the *Mounting Screw* threads with *WD-40* and wipe off any excess with a towel
- 14. Place the *Load Cell* against bottom of *Crosshead*
- 15. Align the *Load Cell* so *Anti-rotation Pin* will fit into slot underneath *Crosshead* and cable is toward the back

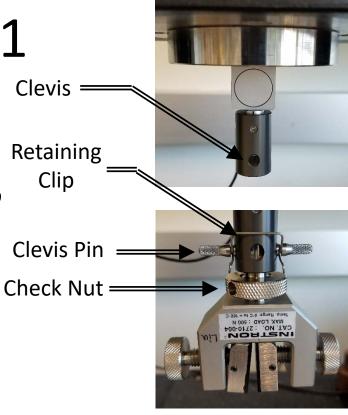
- 16. Ensure that *Anti-rotation Pin* and *Locating Ring* fit securely in place against *Crosshead* and *Load Cell*
- 17. Insert the *Mounting Screw* on to top of *Crosshead*




I.C. 10 N Load Cell – 4/5

- 18. Tighten the *Mounting Screw* by hand so that it is secure against the *Load Cell*
- 19. Install the appropriate *Hex Adapter* to *Torque Wrench*

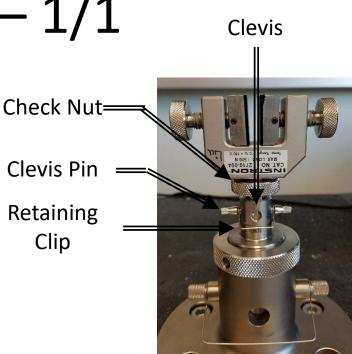
- 19. Further tighten the *Mounting Screw* with the *Torque Wrench*
- 20. Torque down to 9 ft-lb (*12 N-m*) using the *Torque Wrench*

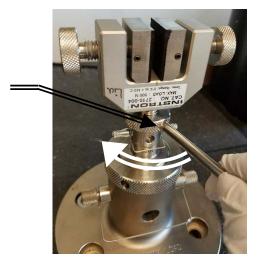




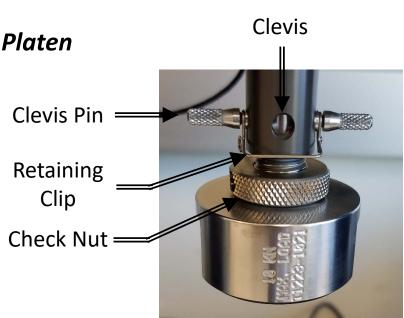
I.C. Top Screw Grip – 1/1

NOTE: ALWAYS SUPPORT FIXTURE WITH HAND DURING INSTALLATION AS IMPOSED LOAD BY USER MAY BE ENOUGH TO PERMANENTLY DAMAGE LOAD CELL Retaining

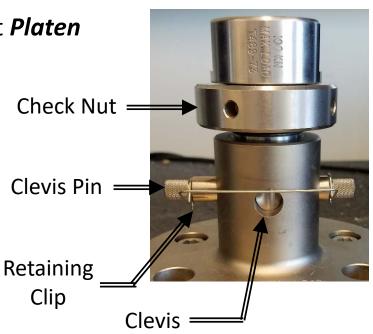

- 1. Position *Check Nut* until it is loose against *Grip*
- 2. Align the *Grip Clevis* to the *Clevis* in the *Load Cell*
- Insert the 6 mm Clevis Pin through the Clevis and into the Load Cell
- 4. Attach the *Retaining Clip*, making sure the fixture is supported at the bottom
- 5. Hand tighten the *Check Nut* turning *counter-clockwise* toward *Load Cell*
- 6. Further tighten the *Check Nut* with *Tommy Bar*, but DO NOT OVERTIGHTEN!



I.C. Bottom Screw Grip – 1/1


- 1. Position the *Check Nut* until it is loose against *Grip*
- 2. Align the *Grip Clevis* to the *Clevis* in the *O Adapter*
- 3. Insert the *6 mm Clevis Pin* through the *Clevis* and into the *Load Cell*
- 4. Attach the *Retaining Clip*
- 5. Hand tighten the *Check Nut* turning *clockwise* toward *O Adapter* Tommy Bar
- 6. Further tighten the *Check Nut* with *Tommy Bar*, but DO NOT OVERTIGHTEN!

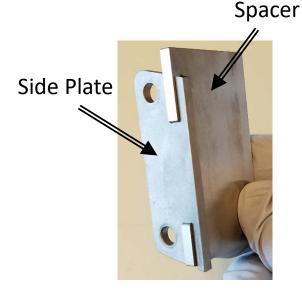
I.C. Top 2" Platen – 1/1

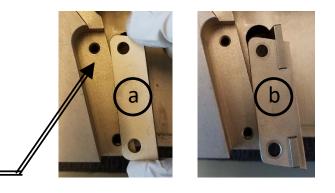

- 1. Position *Check Nut* until it is loose against *Platen*
- 2. Align the *Platen Clevis* to the *Clevis* in the *Load Cell*
- 3. Insert the *6 mm Clevis Pin* through the *Clevis*
- 4. Attach the *Retaining Clip*
- 5. Hand tighten *Check Nut* turning *counter-clockwise* until it is against the *Load Cell*
- 6. Use the provided *Tommy Bar* to help, but DO NOT OVERTIGHTEN!

Tommy Bar

I.C. Bottom 2" Platen – 1/1

- 1. Position the *Check Nut* until it is loose against *Platen*
- 2. Align the *Platen Clevis* to the *Clevis* in the *Base Adapter*
- 3. Insert the ½" Clevis Pin through the Clevis
- 4. Attach the *Retaining Clip*
- 5. Hand tighten the *Check Nut* turning *clockwise* until it is against the *Base Adapter*
- 6. Use the provided *Tommy Bar* to help, but DO NOT OVERTIGHTEN!





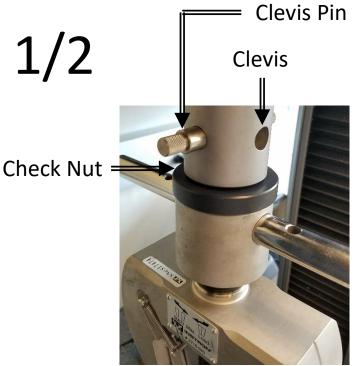
Tommy Bar

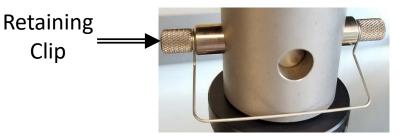
II.A. Jaw Faces – 1/2

- 1. Identify the appropriate *Jaw Faces* for your test specimen size
 - a) 0 0.25" Jaws requires side plate only
 - b) 0.25 0.5" Jaws requires spacer + side plate
- 2. If desired *Jaw Face* is already installed, skip to *II.B. Wedge Grips*
- Remove installed spacers or side plates using a *3 mm hex wrench*
- 4. Align the *Side Plate* so it is aligned with the two screw holes on top of the flat section
- 5. Rotate the handle until the *Wedge Grips* are in the fully *Open* position

II.A. Jaw Faces – 2/2

6. Coat the back and base of the *Jaw Face* with *Molykote g-N paste* using the applicator provided


Note: Wipe down applicator + Wash hands thoroughly after using Molykote g-N paste!

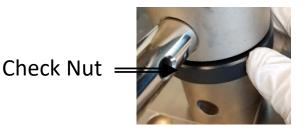

- 6. Insert the *Jaw Face* and slide it towards the base of the *Wedge Grip*
- Firmly secure the *Side Plates* using the *3 mm hex wrench* so the *Jaw* has no sideways movement
- 8. Attach the *Springs* from the spring retainer post to the post for each *Jaw Face*
- 9. Repeat for the back side

II.B. Top Wedge Grips – 1/2

- 1. Identify the *Top Wedge Grip* from drawer first
- 2. Position *Check Nut* until it is loose against *Grip*
- 3. Orient the *Wedge Grip* to be perpendicular to the *Crosshead*
- 4. Align the *Wedge Grip Clevis* to the *Clevis* in the *Load Cell*
- Insert the ½" Clevis Pin through the Clevis and into the Load Cell
- 6. Attach the *Retaining Clip*
- Confirm that the *Check Nut* is still loose between the *Load Cell* and *Wedge Grip*

II.B. Bottom Wedge Grips – 2/2

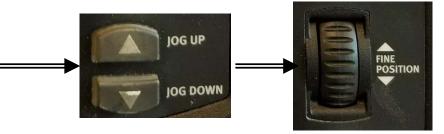
- 8. Identify the *Bottom Wedge Grip* from drawer first
- 9. Check that the *Compression Spring* is placed inside the bottom *Base Adapter*
- 10. Position *Check Nut* until it is loose against *Grip*
- 11. Orient the *Wedge Grip* to be perpendicular to the *Crosshead*
- 12. Align the *Wedge Grip Clevis* to the *Clevis* in the *Base Adapter*
- Insert the ½" Clevis Pin through the Clevis and into the Base Adapter
- 14. Attach the *Retaining Clip*
- 15. Confirm that the *Check Nut* is still loose between the *Base Adapter* and *Wedge Grip*


Compression Spring

Bottom Base Adapter

II.C. Preloading – 1/5

Note: Preloading the load string prevents backlash and deflections which can degrade integrity of results at high load tension tests

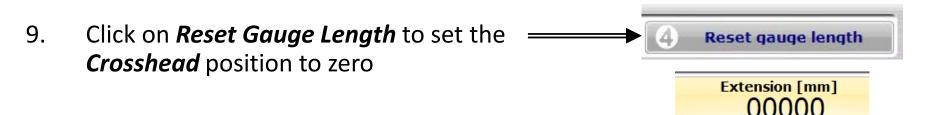

- 1. Identify which *Preloading specimen* is appropriate for your Jaw Faces
 - a) 20 kN Maximum Load: 0 0.25" Jaws
 - b) 50 kN Maximum Load: 0.25 0.5" Jaws
- 2. Before inserting *Preloading specimen*, check the following:
 - a) Both *Check Nuts* are loose
 - b) Click *Balance Load* and check live load is near zero =
 - c) Identify the *Maximum Load* you plan on applying for your tests and NEVER exceed the *Maximum Load* for ANY component in the load string

II.C. Preloading – 2/5

 Press the Jog Up/Down Δ∇ buttons and Fine Jog on the control panel to adjust the Wedge Grip positions to an appropriate height

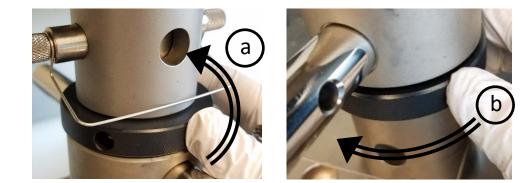
- 4. Adjust *Wedge Grip* positions until majority of Jaw Faces are engaged with the *Preloading specimen*
- 5. Align and center the specimen visually into the *Jaw Faces*
- 6. Turn handles to tighten the lower and upper grips until the *Jaw Faces* engage the specimen

II.C. Preloading – 3/5


- 7. Identify a *Load Limit* that is *10-15%* greater than the highest load you will be applying for your tests
- 8. If unknown, check the provided table to estimate the anticipated load applied to your specimen

Load (N) = Yield Strength or Ultimate Strength (MPa) x Area (mm²)

```
e.g. Mild Steel 1090: Yield Strength = 248 Mpa
Ultimate Strength = 841 MPa (largest)
```


Ultimate Load = 841 MPa x 25 mm² \approx 21,000 N or 21 kN

To be safe, assume Max Load \approx 25,000 N or 25 kN (15% greater)

II.C. Preloading – 4/5

- 10. Slowly *Fine Jog* up until the desired load is achieved
- 11. Hand tighten the *Check Nuts* against the *Load Cell* and *Base Adapter*; respectively
 - a) Top: *Counter-clockwise*
 - b) Bottom: *Clockwise*

12. Use provided *Spanner Wrench* to provide additional help if necessary, but DO NOT OVERTIGHTEN!

- 13. Slowly *Fine Jog* back down until the load is near zero again
- 14. Unload the *Preloading specimen* by turning the handles on the upper and lower grips
- 15. You may now execute tests on your desired samples, but remember to UNLOAD PRELOAD before leaving!

II.C. Preloading – 5/5

NOTE: Check nuts will now be **TOO TIGHT** and will require you to unload preload to remove wedge grips!

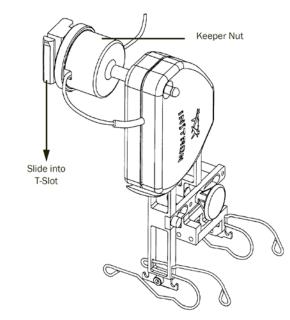
- To unload the Preload, click **Balance Load** = 16. with nothing installed
- Re-install the *Preloading specimen* 17.
- 18. Slowly *Fine Jog* up until the previously used load is achieved again (approximately)
- 19. Loosen the *Check Nuts* again if possible, else slowly *Fine Jog* to increase the load until *Check Nuts* are loose again
- If necessary, use the provided **Spanner Wrench** 20. to help you loosen
- Slowly *Fine Jog* back to near *Zero Load* to uninstall the *Preloading specimen* 21.

Balance Load

II.D. Specimen Loading – 1/1

NOTE: NEVER exceed the Maximum Load for ANY component in the load string such as Load Cell, Grips, or Fixtures!

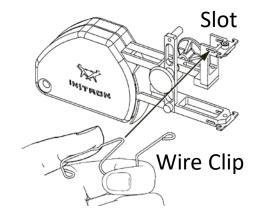
- 1. Adjust *Wedge Grip* height and install specimen so majority of *Jaw Faces* are engaged
- 2. Align and center the specimen visually into the *Jaw Faces*
- 3. Turn handles to tighten the lower and upper grips until the *Jaw Faces* engage the specimen
- Continue to *II.E. Extensometer* if you require accurate Stress-Strain values prior to yielding (e.g. Young's Modulus), else skip directly to *VI. Running Test*

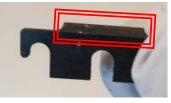


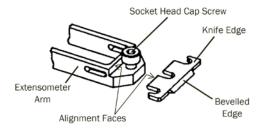
II.E. Extensometer – 1/5

Extensometer provides a more accurate measure of *Strain* during your test compared to using the *Extension* alone from *Crosshead* position

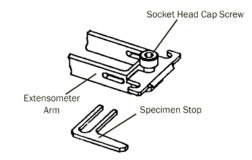
NOTE: **Extensometer** is only rated to travel -0.1" to +1.0" for a set gauge length of 1.0" or -10% to 100% **Strain** and is only appropriate for low ductility samples like metals and NOT polymers!

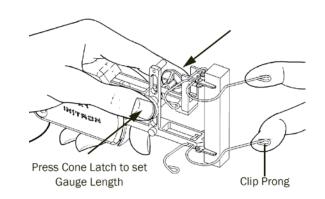


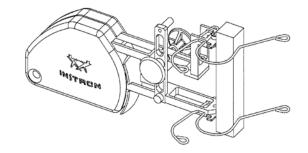

1. Identify appropriate *Wire Clip* based on specimen shape and size


Specimen Shape	А	В	С	D	E	F
Round (RO)	0 – 3 mm 0 – 0.12"	3 – 6 mm 0.12 – 0.24"	6 – 9 mm 0.24 – 0.35"	9 – 12 mm 0.35 – 0.47"	12 – 15 mm 0.47 – 0.59"	20 mm 0.79″
Rectangle (RE)	0 – 3 mm 0 – 0.12"	3 – 6 mm 0.12 – 0.24"	6 – 9 mm 0.24 – 0.35"	9 – 12 mm 0.35 – 0.47"	12 – 15 mm 0.47 – 0.59"	N/A

II.E. Extensometer – 2/5


- 2. Insert the *Wire Clip* by squeezing and inserting into *Slot* as shown
- 3. Visually inspect the *Bevelled Edge* on the *Knife Edge* and contact Lab Manager if chipped or severely worn
- 4. Check that the *Knife Edge* is installed correctly and flush against the *Alignment Faces* using provided *2 mm Hex Key*
- If desired, install and visually align the *Specimen Stop* to help with specimen alignment





II.E. Extensometer – 3/5

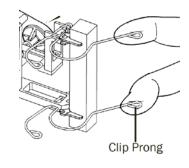
- 6. Push the *Cone-Latch* together with your index finger and thumb to set *Gauge Length*
- 7. Use other hand to hold the *Clip Prongs* open and slip onto specimen as shown
- 8. Gradually release the clip prongs first and allow *Bevelled Edge* to gently touch specimen
- 9. Release the **Cone-Latch** to set the 1" gauge length
- 10. If the *Extensometer* slips, you may need to use a smaller sized *Wire Clip*

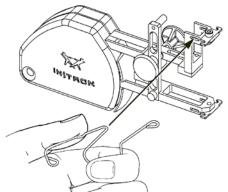
NOTE: Do not slide *Bevelled Edge* against the specimen as you attach to specimen as it will blunt the *Bevelled Edge* and scratch your specimen

II.E. Extensometer – 4/5

NOTE: *Extensometer* can only be used in the elastic region of the stress-strain curve and **MUST** be removed at the **Yield Strength** or before reaching **+100% strain**

- 11. Protect the *Extensometer* by removing it before it gets broken!
- 12. Ensure that "*Remove extensometer during test*" is checked under the *Methods > Test Control > Strain* section
- 13. Select "Yield (Offset 0.002 mm/mm)" or "Measurement event - (Strain 1 = 100%)" as the Removal criteria
- 14. Select "Pause test but suspend data capture" as the Action during removal

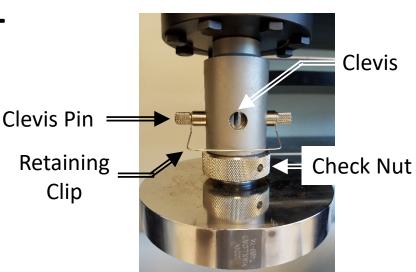

🛛 Specimen	Tensile strain (Extension)	
Measurements	Primary source:	test
Calculations	Removal criteria:	Yield (Offset 0.002 mm/mm)
Test Control	Action during removal:	Pause test but suspend data capture
Start Test Strain	Removal criteria:	Measurement event
	Measurement:	Strain 1
	Value:	100.00000 🚖 % 👻 🔝
	Action during removal:	Pause test but suspend data capture

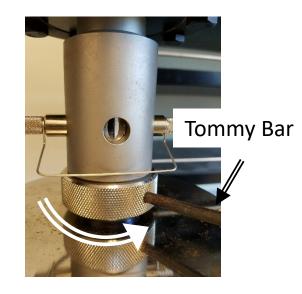

II.E. Extensometer – 5/5

14. To remove, hold *Extensometer* with one hand and carefully pry the clip prongs open with other hand

NOTE: DO NOT PUSH THE CONE-LATCH BUTTONS TOGETHER AS THIS WILL SCRAPE THE BEVELLED EDGE AGAINST YOUR SPECIMEN BACK TO GAUGE LENGTH!

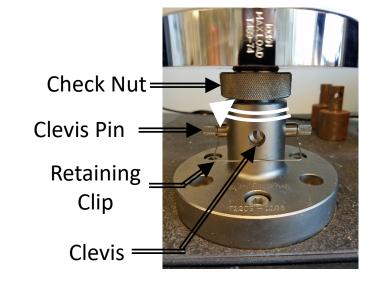
- 15. Remove the *Extensometer* from the *Specimen*
- 16. Avoid sliding the knife edge against the specimen as you remove the *Extensometer* again to prevent damage
- 17. Remove the *Wire Clip* and place back into storage box
- 18. Place the *Extensometer* back onto its holder next to the frame





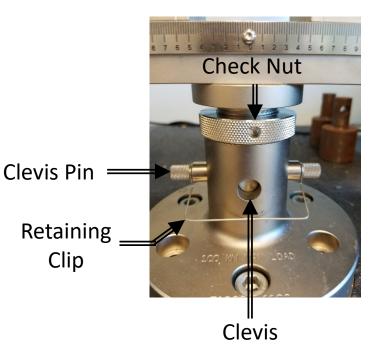
III.A. Top Platen – 1/1

- 1. Position the *Check Nut* until it is loose against the *Platen*
- 2. Align the *Platen Clevis* to the *Clevis* in the *Load Cell*
- Insert the ½" Clevis Pin through the Clevis
- 4. Attach the *Retaining Clip*
- 5. Hand tighten *Check Nut* turning *counter-clockwise* until it is against the *Load Cell*
- 6. Use the provided *Tommy Bar* to help, but DO NOT OVERTIGHTEN!


III.B. Bottom Platen – 2/1

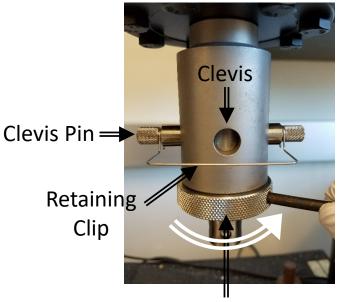
- 1. Check that the *Compression Spring* is placed inside the bottom *Base Adapter*
- 2. Position the *Check Nut* until it is loose against the *Platen*
- 3. Align the *Platen Clevis* to the *Clevis* in the *Base Adapter*
- 4. Insert the ½" Clevis Pin through the Clevis
- 5. Attach the *Retaining Clip*
- 6. Hand tighten the *Check Nut* turning *clockwise* until it is against the *Base Adapter*
- 7. Use the provided *Tommy Bar* to help, but DO NOT OVERTIGHTEN!

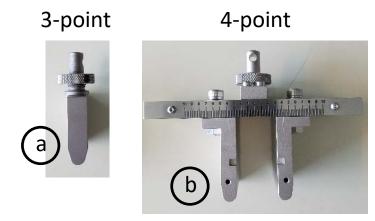
Compression Spring Bottom Base Adapter


IV.A. Lower Anvils – 1/1

- 1. Check that the *Compression Spring* is placed inside the bottom *Baseplate Adapter*
- 2. Position *Check Nut* until it is loose against *Anvil*
- 3. Place the *Lower Anvil* assembly into the *Baseplate Adapter*
- 4. Rotate the *Lower Anvil* until the scale faces the front and the *Anvil Clevis* are aligned with *Baseplate Adapter Clevis*
- 5. Insert the ½" Clevis Pin into the Baseplate Adapter
- 6. Attach the *Retaining Clip*

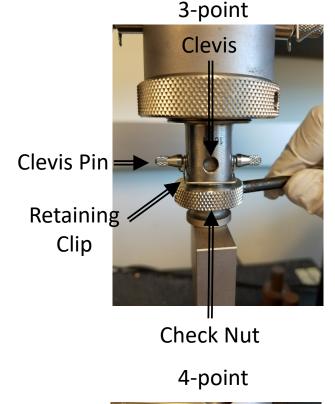
Compression Bottom Base Spring Adapter

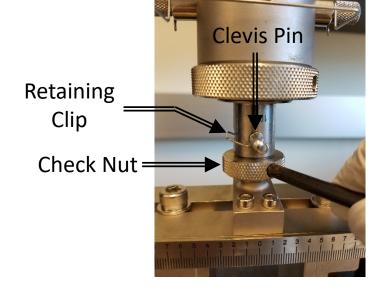




IV.B. Upper Anvils – 1/2

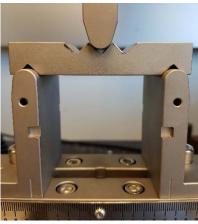
- 1. Position *O Adapter Check Nut* until it is loose
- 2. Insert the *O Adapter* into the *Load Cell*
- 3. Align the **O Adapter Clevis** to the **Clevis** in the **Load Cell**
- Insert the ½" Clevis Pin through the Load Cell
- 5. Attach the *Retaining Clip*
- 6. Hand tighten the *Check Nut* turning *counter-clockwise* until it is against the body of the *Load Cell*
- 7. Use the provided *Tommy Bar* to help, but DO NOT OVERTIGHTEN!
- 8. Select desired *Upper Anvils* to install
 - a) 3-point Flexural tests
 - b) 4-point Flexural tests




Check Nut

IV.B. Upper Anvils – 2/2

- 9. Position *Check Nut* until it is loose against *Anvil*
- 10. Insert the *Upper Anvil* into the *O Adapter*
- 11. (3-point) Rotate the *Upper Anvil* until it is parallel with the *Lower Anvils*
- 12. (4-point) Rotate the *Upper Anvils* until it is parallel with the *Lower Anvils* and the scale faces the front
- 13. Align and insert the *6 mm Clevis Pin* into *O Adapter* clevis
- 14. Attach the *Retaining Clip*



IV.C. Alignment – 1/2

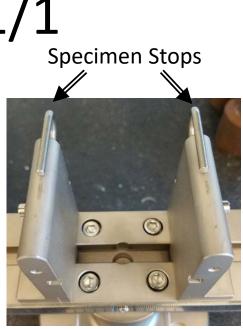
- 1. Loosen the cap screws with 6 mm Hex holding the Lower and Upper Anvils and allow them to slide freely
- 2. Place the *Alignment Plate* onto the *Lower Anvils*
- 3. Adjust the *Lower Anvil* positions until they are both at about *6.2* on the lower front scale
- 4. For 3-point fixture, there is no need for adjustment of the single *Upper Anvil*
- 5. For 4-point fixture, adjust the **Upper Anvils** until they are both at about **2** on the upper front scale
- 6. Carefully lower the *Crosshead* using *Jog* and *Fine Jog* until the *Upper Anvil(s)* are just above the *Alignment Plate*

IV.C. Alignment – 2/2

- 7. Adjust and align both the *Upper and Lower Anvils* until they **BARELY** touch
- 8. Hand tighten the *Check Nuts* on the *Upper and Lower Anvils*
 - a) Lower Anvil: *Clockwise*

Lower Anvil

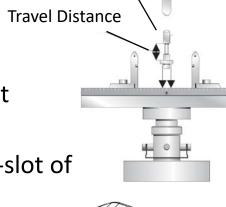
- b) Upper Anvils: *Counter-clockwise*
- 9. Use the provided *Tommy Bar* to help, but DO NOT OVERTIGHTEN!

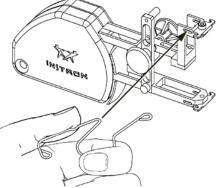

Tommy Bar Bar

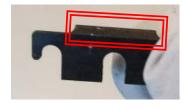
Upper Anvil

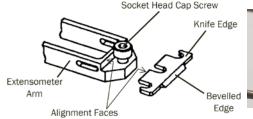
Upper Anvil

IV.D. Specimen Loading – 1/1

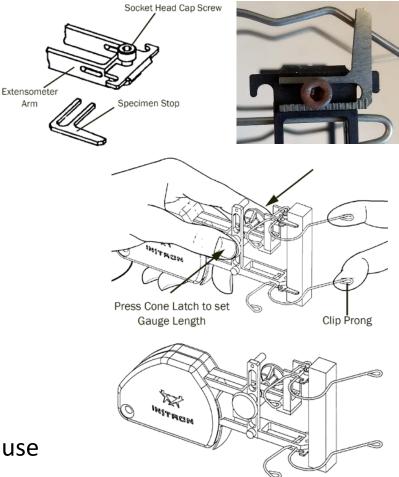

- 1. For 3-point fixture, set the span of the *Lower Anvils* to an appropriate spacing for your specimen
- 2. For 4-point fixture, set the span of both the *Upper and Lower Anvils* to an appropriate spacing for your specimen
- 3. Slightly raise the *Crosshead* to allow room for your specimen
- 4. Install *Specimen Stops* to ensure that each specimen is consistently in the same position on the fixture
- 5. Slide each specimen stop through the hole on the back (or front) of each *Lower Anvil*
- 6. Secure *Specimen Stops* in the desired position with the *2.5 mm Cap Screws* located on the side of each *Lower Anvil*




IV.E. Deflectometer – 1/4


- 1. Install *Deflectometer* and *Extensometer* to accurately measure deflection of the specimen during a flexure test
- Place *Deflectometer* in the center hole, located in the T-slot of *Anvil*
- 3. Choose *Wire Clip RO D 9 12 mm* and insert the *Wire Clip* by squeezing and inserting into slot as shown
- 4. Visually inspect the *Bevelled Edge* on the *Knife Edge* and contact Lab Manager if chipped or severely worn
- Check that the *Knife Edge* is installed correctly and flush against the *Alignment Faces* using provided *2 mm Hex Key*

Deflectometer



IV.E. Deflectometer – 2/4

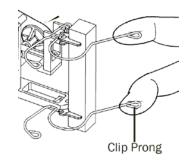
- If desired, install and visually align the Specimen Stop to help with specimen alignment
- 7. Push the *Cone-Latch* together with your index finger and thumb to set gauge length
- 8. Use other hand to hold the *Clip Prongs* open and slip onto *Deflectometer*
- 9. Gradually release the clip prongs first and allow *Bevelled Edge* to gently touch *Deflectometer*
- 10. Release the **Cone-Latch** to set the 1" gauge length
- 11. If the *Extensometer* slips, you may need to use a smaller sized *Wire Clip*

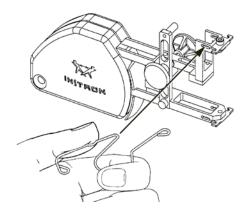
NOTE: Do not slide *Bevelled Edge* against the *Deflectometer* as it will blunt the *Bevelled Edge* and scratch *Deflectometer* surface

IV.E. Deflectometer – 3/4

NOTE: EXTENSOMETER **MUST** BE REMOVED BEFORE REACHING -10% STRAIN

- 12. Protect the *Extensometer* by removing it before it gets broken!
- 13. Ensure that "*Remove extensometer during test*" is checked under the *Methods > Test Control > Strain* section
- 14. Select "*Measurement event*" as the Removal criteria
- 15. Select "Strain 1" as Measurement and "-10%" as Value
- 16. Select "Pause test but suspend data capture" as the Action during removal


品 General	Set the parameters for ten	sile strain ent for some calculations, such as modulus and energy.
J Sample		
] Specimen	Tensile strain (Extension)	
A Measurements	Primary source:	Extension 💌
	Remove extensometer during test	
Calculations	Removal criteria:	Measurement event
Test Control	Measurement:	Strain 1
Start Test	Value:	-10.00000 🗧 🗞 🔻 🗐
Strain	Action during removal:	
Pre-Test	Action during removal:	Pause test but suspend data capture 🔹
Test		


IV.E. Deflectometer – 4/4

17. Hold the *Extensometer* with one hand and carefully pry the *Clip Prongs* open with your other hand

NOTE: DO NOT PUSH THE CONE-LATCH BUTTONS TOGETHER AS THIS WILL SCRAPE THE BEVELLED EDGE AGAINST DEFLECTOMETER BACK TO GAUGE LENGTH!

- 18. Remove the *Extensometer* from the *Deflectometer*
- 19. Avoid sliding the knife edge against the *Deflectometer* as you remove the *Extensometer* again to prevent damage
- 20. Remove the *Wire Clip* and place back into storage box
- 21. Place the *Extensometer* back onto its holder next to the frame

V. Configuring Test – 1/22

- 1. The following questions should be answered prior to creating or executing a test procedure:
 - a) What is the test going to do?
 - b) What starts and stops the test?
 - c) What speed or speeds should the test run?
 - d) What is the shape and dimensions of the test specimen?
 - e) What data is collected and at what rate?
 - f) What output (graphs, reports) are required?
 - g) What answers from the test do you require?
 - h) What information is going to be supplied by the operator?
- 2. Click *Method > Open Method > Create Method*

- 3. Choose the appropriate *Test Type* and click *Next*
 - Tension method
 - Compression method
 - Flexure method

V. Configuring Test – 2/22

- 4. Select *General* parameters for your test such as:
 - System of units: (SI, Metric, US, or All) Recommend "All"

 General Method Sample 	 Set the general parameters for the test method General parameters include: The units that the system uses as the default for all unit fields in the method. How the system assigns default settings for added specimens. A description of the method that displays in the preview area when you select a test method. 		
][Specimen	Test type:	Tension	
Heasurements	System of units:	All	
Calculations	Assign specimen parameters from:	Method default	

- 5. Select *Sample > Notes* to create any sample description or notes
 - Sample description is stored with all samples created with this test method
 - Sample notes are available for display when notes are included with sample

급 General	Create the sample description and sample notes The sample description is stored with all samples created with this test method and displays in the
J Sample	The sample description is stored with an samples created with this test method and displays in the
Notes Number Inputs Text Inputs	Sample description:
Specimen	Sample note 1:

V. Configuring Test – 3/22

- 6. Click *Specimen > Properties* to specify the specimen default properties for each specimen
 - Geometry and default dimensions are important for the software calculations

品 General			and the default value	S btion in the legend settings for a grap
Sample	Specimen pro	perties		
Image: Specimen Image: Properties	Specimen label:		<u></u>	
Notes Number Inputs		default dimensions		
Text Inputs Choice Inputs	Geometry: Width:	Rectangular		width
Measurements	Thickness:	6.00000		Lthickness
Calculations	Length:	25.40000	÷	
H Test Control	Final width:	12.70000	÷mm 🔻 🥒	view 🖸 🗖 🖻
Console	Final thickness:	6.00000	÷ mm ▼ 🥒	
Workspace	Final length:	25.40000	÷ mm ▼ 🥖	

V. Configuring Test – 4/22

7. Click *Measurements > Setup* to specify the data that is available for the test control, data analysis and live display

品 General	Create and edit measurements			
圓 Sample	Measurements provide the data that is available for test control, graphing and analysis. Physical measurements provide data for test control cannot be removed from the right column.			
🛛 Specimen	Measurement types	Selected measurements available in the test method		
Measurements	Physical measurements Load	Time Extension		
Setup	Strain	Load		
	User-defined	Tensile strain (Extension)		
Calculations	Virtual measurements	Tensile extension		
		Tensile stress		
Test Control		Tenacity		
Console		Strain 1		

- 8. Physical Measurements directly measured from physical transducer include:
 - Time

Load

- Extension (determined based on *Crosshead* location)
- Strain 1 (only when using the *Extensometer*)
- 9. Virtual Measurements are calculated from one or more physical measurements include:
 - Strain (compressive, tensile, or flexure)
 Stress (compressive, tensile, or flexure)

V. Configuring Test – 5/22

- 10. Click *Calculations > Setup* to identify desired calculations that will be performed during or after the test is run
- 11. Use of *Extensometer* with Tension tests, will require calculation of the *Yield (Offset 0.2%)*

B General	Select and edit calc The system performs the se	c ulations elected calculations using data from the selected	
Sample			
Specimen	Available calculations n-value Peak first	Selected calculations Area under curve Modulus (Automatic)	
A Measurements	Peak local Peak maximum/minimum	Yield (Offset 0.2 %)	
Calculations	Poisson's ratio Preset point		
Rounding	r-value Seam slippage		
Test Control	Slack correction Slope	E	
Console	Tensile strength User calculation		
Workspace	Yield Yield	•	
	Description:	Yield (Offset 0.2 %)	
& Prompted Test	Туре:	Offset	•
	Domain:	"Ramp 1"UNTIL"End of Data"	
	Parent calculation:	Modulus (Automatic)	
	Search measurement:	Tensile strain (Extension)	_
	Value:	0.200	- 📰

V. Configuring Test – 6/22

- 12. Click *Test Control > Start Test* and choose *Start button* (default)
- 13. Click *Test Control > Strain* to specify primary source of data for strain measurements
 - Choose "Extension" as the Primary source using the Crosshead location
- 14. If using *Extensometer*, you MUST check "Remove extensometer during test"
 - Choose "Yield (Offset 0.002 mm/mm) or "Measurement event (Strain 1 = 100%)" as the Removal criteria
 - Choose "Pause test but suspend data capture" as the Action during removal

Specimen	Tensile strain (Extension)	
Measurements	Primary source:	Extension 🔹
	Remove extensometer during te	st
Calculations	Removal criteria:	Yield (Offset 0.002 mm/mm)
Test Control	Action during removal:	Pause test but suspend data capture
Start Test		
Strain	Removal criteria:	Measurement event
Pre-Test		
Tast	Measurement:	Strain 1 🔹
	Value:	100.00000
	Action during removal:	Pause test but suspend data capture

V. Configuring Test – 7/22

- 15. Click *Test Control > Pre-Test* to assign a preload, auto balance, or precycling
 - **Preload** used to remove slack from test fixtures that requires specifying the control measurement, preload rate, target measurement, and target value
 - **Auto balance** used to automatically balance transducers associated with selected measurements after preload or precycling
 - *Precycling* may be required for some tests and not available in every testing type

品 General	Set the pre-test paral Pre-test parameters include pila	
🗍 Sample		w
🛛 Specimen	Preload	a specimen or remove compressive load on the specimen caus
A Measurements	Control mode:	Extension
Calculations	Rate:	0.00000 文 mm/min 🔻 🔝
Test Control	Changeover criteria:	Measurement event
Start Test	Measurement:	Load 👻
Strain Pre-Test	Value:	0.00000 🖨 N 🔻 🔝
Test		
End of Test Data	V Auto balance	
Console	Automatically balance selecte Available measurements Load	ed measurements after preload and before the test starts. Selected measurements Tensile strain (Extension)

V. Configuring Test – 8/22

- 16. Click *Test Control > Test* to identify parameters specific to the test type such as the speed of the test and the number of speeds
 - Specify a default or initial speed with *Ramp 1* control
 - Choose a *Ramp 2* control to separate a slow speed in elastic region (*Ramp 1*) and a faster speed in the plastic region (*Ramp 2*)
 - Choose a Changeover (1 to 2) criteria such as Yield (Offset 0.002 mm/mm)

品 General	Set the control parameters of the control mode and rate de	neters for the test termine the frame movement. C	Only physical measuremen
🛛 Specimen	🖉 Ramp 1		
Measurements	Control mode 1:	Extension	▼
	Rate 1:	10.00000	🗧 mm/min 🛛 🔻 🔝 🥒
Effections			
Test Control	🔽 Ramp 2		
Start Test	Control mode 2:	Extension	-
Strain	Rate 2:	0.00000	🗧 [mm/min 🔹 🔝 🥒
Pre-Test Test	Changeover (1 to 2):	Yield (Offset 0.002 mm/mm)	
End of Test Data	Changeover override:	0.00100	mm/mm
<u>-</u>			

V. Configuring Test – 9/22

17. Click *Test Control > End of Test* to set up to 4 criteria for ending the test and the actions that the system performs when one of the end of test criteria is satisfied

品 General	Set the parameters for The system uses the specified cri	r ending the test iteria to end the test and performs the specified end of test actions. All criteria	
📆 Sample			
🛛 Specimen	✓ End of test 1		
Measurements	Criteria 1:	Rate of Load 🔹	
Calculations	Sensitivity:	40.00000	
Test Control	End of test 2		
Start Test Strain Pre-Test	End of test 3		
Test End of Test	End of test 4		
Data	End of test action: Stop		
Workspace	Release pneumatic grips		

V. Configuring Test – 10/22

18. Select the appropriate *End of Test Criteria*:

- Rate of load test ends when load drops by Sensitivity value within 100 ms time period
- Load threshold test ends when load falls to Load drops to value, but is only active when load attains a value of 1.5 x Load drops to value first
- Load with delay detector is inactive for the Delay period specified and ends when load falls to the Load drops to value
- % Peak Load detector is inactive until Load threshold field is exceeded and ends test when load drops by specified % Peak Load
- Measurement Event transition occurs when system detects a specified measurement criteria being satisfied such as Extension value or Load value
- 19. Select the appropriate *End of Test action*:
 - *Stop* the *Crosshead* stops (good default)
 - *Return* the *Crosshead* stops and returns to gauge length (NEVER SELECT!)
 - Stop, then Return Crosshead stops, prompt to remove specimen first then return to gauge length (good for multiple specimens)

V. Configuring Test – 11/22

- 20. Click *Test Control > Data* to determine the number of data sets stored in the test data file
 - Automatic (default) default data capture criteria captures 10 points/sec and whenever load changes 0.25% of load capacity
 - *Manual* set up to three separate data logging criteria to tailor data logging to application needs

品 General	Set the data capture parameters for the test Specify how often the system captures test data. All criteria operate independently and the system captures c					
آراً Sample						
🛛 Specimen	Data capture:	Manual				
Heasurements	Criteria 1					
Calculations	Measurement 1:	Time				
Test Control	Interval 1:	50.00000 🚔 ms 🔹				
Start Test						
Strain	Criteria 2					
Pre-Test						
Test	Criteria 3					
End of Test						
O Data	Record with TestCam					
🕼 Console						

V. Configuring Test – 12/22

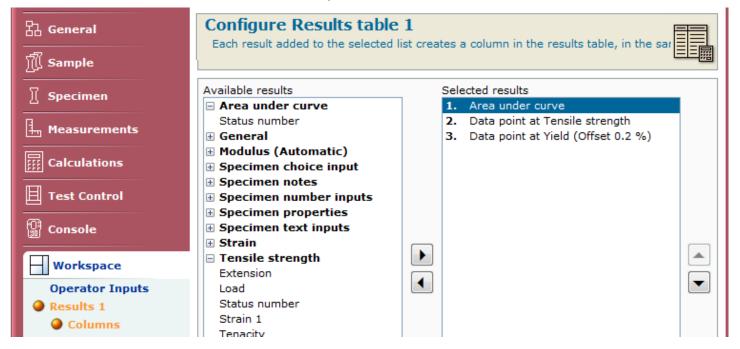
- 21. Click *Console > Live Displays* to customize up to 4 live displays on the console (if desired)
- 22. Recommended *Live Displays* are:
 - *Load* (N)
 - Extension (mm)
 - *Strain 1* (%) if using *Extensometer*

品 General ⑪ Sample	Select the live displays for the console area The console area is the top section of the screen and is always visible. Live displays show the data from se 1.23						
🛛 Specimen	Available live displays			Selected live displays (maximum of 4)	_		
Heasurements	Break (Standard) Extension	-		1. Extension 2. Load			
Calculations	Load Tensile stress						
Test Control	Time Tenacity						
ि Console	Tensile extension Tensile strain (Extension)						
Live Displays	Status number						
Soft Keys	Data point	≡					
Frame	Energy						
Grips	🗆 Maximum Load						

V. Configuring Test – 13/22

- 23. Click *Console > Soft Keys* to selectively program up to 4 functions on the control panel
- 24. Recommended *Soft Keys* are:
 - Balance Load
 - Balance Strain 1 if using Extensometer
 - Balance all
 - Reset gauge length

品 General ① Sample	Assign functions to the soft keys Use the soft keys to perform the assigned functions from either the control panel on th					
🛛 Specimen	Available soft keys	_	Selected soft keys (maximum of 4)			
E Measurements	Balance Balance all		 Balance Load Balance all 			
E Calculations	Exclude specimen Remove extensometer					
Test Control	Reset gauge length Pause test					
Console	Reverse direction					
Live Displays Soft Keys			Balance all			
Frame Grips			Description:	Balance all		


V. Configuring Test – 14/22

- 25. Click *Console > Frame* to specify the test area to be *Below crosshead*
- 26. Specify the maximum absolute load that the specimen can experience without damage under the *Threshold* value for *Specimen protect*

品 General ① Sample	Set the parameters for the frame test area Specify the test area and set the threshold value for the specimen protect feature. Enable specimen protect on the					
🛛 Specimen	Test area					
Heasurements	 Above crosshead Below crosshead 					
Calculations	Specimen protect					
Test Control	Protects the specimen from too much load before the test starts. Set the threshold value at the maximum absolute load that the					
Console	Threshold:					
Live Displays						
Soft Keys						
Frame Grips						

V. Configuring Test – 15/22

27. Click *Workspace > Results 1 & 2 > Column* to add specified calculation to be added into results table in the report

- Click Workspace > Results 1 & 2> Statistics to add specified statistics to a row in results table
- 29. Click *Workspace > Results 1 & 2> Format* to select how the results table appears in the test workspace and in the report

V. Configuring Test – 16/22

- 30. Click *Workspace > Graph 1 & 2* to select the graphics for this method in the test workspace and in a report
- 31. Click *Workspace > Graph 1 & 2 > X & Y-Data* to choose axes variables

品 General	Select the type of graph and basic format for graph 1 The graph format determines how the graph appears in the test workspace and in the report. To include the graph in the r	/
🗍 Sample		an
🗓 Specimen	Select a graph type	
Heasurements	 Multi-specimen Multi-specimen graph can display up to 25 specimen curves on each graph. Multi-measurement 	
Calculations	Graph title: Specimen %n to %m	
Test Control	Domain: "Start of Data" UNTIL "End of Data" Curves per graph: 4]
Console	Offset each curve by:	
Workspace	Show excluded specimens Enable data point selector	
Operator Inputs Results 1 Results 2	Spe	٦
\varTheta Graph 1		
Type X-Data Y-Data	24 22 Marker Style	
Advanced	20	

V. Configuring Test – 17/22

- 32. Click *Workspace > Raw Data* to set up the content for the raw data table
- 33. Click *Workspace > Raw Data > Columns* to arrange the order
- 34. Click *Workspace > Layout* to set up what is displayed on the test workspace

品 General	Create a table to di Each measurement added to	display raw data on the workspace I to the selected list creates a column in the raw data table, in the same order as they appear in the list.
🗍 Sample		
Specimen	Available measurements PIP count	Selected measurements 1. Time
Aeasurements	Tenacity Tensile extension	2. Extension 3. Load
Calculations	Tensile strain (Extension) Tensile stress	4. Strain 1
Test Control		
[]] Console		
Workspace		
Operator Inputs Results 1		
Results 2		
Graph 1 Graph 2		
Raw Data		
Columns		

V. Configuring Test – 18/22

- 35. Click *Exports > File Settings* to set a default file name and location for all your output files such as Reports, Results, and Raw Data
- 36. Click *Exports > Reports* to determine how the system produces the report when it generates output for a sample

品 General	Edit the output file settings Output file settings establish a default location and file name that the system uses to save the sample file and associated output files.
🗍 Sample	open sample.
🗓 Specimen	Specify a default file name and location
A Measurements	Location: Browse Sample file name:
Calculations	Do not use these invalid characters \ / : * ? " < > 1
Test Control	Automatically name the sample
Console	When this option is enabled, the system ignores step 2 of starting a sample and advances directly to the test workspace.
Workspace	
Exports	
File Settings	

V. Configuring Test – 19/22

- 37. Click *Exports > Export Results* to export results tables to .CSV file that the system generates
- 38. Click *Exports > Export Raw Data* to export raw data and determine the additional content in the raw data output file that the system generates

品 General	Edit the raw data export setti	ngs able to a separate file for each specimen when you finish a sample. :
🗍 Sample		
🗓 Specimen	Export raw data	
A Measurements	Export raw data	
Calculations	Include additional specimen informa	
Test Control	Available results Area under curve	Selected results Modulus (Automatic): Modulus (Automatic)
Console	Status number General End date	Area under curve: Area under curve
Workspace	Excluded Specimen number (included)	
Exports	Start date Unique identifier	
File Settings	User	
Reports	Modulus (Automatic)	
Export Results	Energy to X-intercept	
Export Raw Data	Status number X-intercent	

V. Configuring Test – 20/22

- 39. Click *Prompted Test > Prompt Sequence* to specify if the test would proceed with or without a sequence of prompts
- 40. Select which *Prompts* to be included in the test

品 General	Create a prompted test sequence
🗍 Sample	A prompted test provides a series of steps that overlay the test workspace
🛛 Specimen	Run as a prompted test
Measurements	Number of specimens in sample: 10
Calculations	Prompt before start
Test Control	Prompt before specimen
\iint Console	Prompt before test
Workspace	Show workspace after test
Exports	Prompt before calculations
& Prompted Test	
Prompt Sequence	Show workspace after calculations
Before Start Before Test	Prompt after specimen
	Prompt at finish

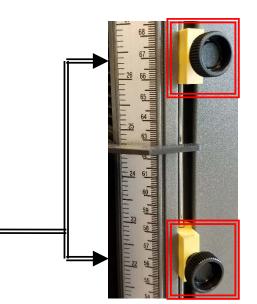
V. Configuring Test – 21/22

41. Click *Prompted Test > Before start of the sample* to enter instructions for the operator and select the parameters that are common to all specimens

品 General	Prompted test - Before start of the sample Enter instructions for the operator and select the parameters that are common to all specimens in the sample.				
Specimen Measurements	Prompt before start: Enter the following values before the start of the sample. (This input information can be added/deleted in the METHODS tab-> Test Prompts				
Test Control Console Workspace Exports	Available parameters General Number of specimens in sample Sample notes Sample number inputs Sample text inputs Specimen choice input Specimen notes	C L G T V L C	elected parameters Company aboratory Name Geometry Thickness Vidth ength Duter diameter		
 Prompted Test Prompt Sequence Before Start Before Test 	 Specimen number inputs Specimen properties Specimen text inputs Test 		inear density Area Diameter Vall thickness Gample description		

V. Configuring Test – 22/22

42. Click *Prompted Test > Before test* to enter instructions for the operator and select the parameters that required before each specimen is tested


品 General ① Sample	Prompted test - Before This is the only step in the sequer	e starting a test nce where a test can start. Enter instructions for the operator a	ĕ →			
🛛 Specimen	Prompt before test:					
Heasurements	Enter the following values before each specimen is tested. Make sure the specimen is properly installed in the test machine.					
E Calculations	Keep clear of the machine.					
Test Control	Available parameters Specimen choice input	Selected parameters Specimen label				
Console	Specimen choice input 1 Specimen choice input 2	Rate 1 Width				
Workspace	Specimen choice input 3 Specimen choice input 4	Thickness Length				
Exports	Specimen choice input 5 Specimen choice input 6	Area Diameter				
& Prompted Test	Specimen choice input 7 Specimen choice input 8	Linear density Outer diameter				
Prompt Sequence Before Start Before Test	Specimen choice input 9 Specimen choice input 10 Specimen notes	Wall thickness				
Before Test	Specimen number inputs Specimen properties					

VI. Running Test – 1/3

- 1. Always set **Upper and Lower Limits** before operating the Instron and ensure appropriate limits are enabled before moving the **Crosshead**
- 2. Loosen and move the slides to the desired positions and tighten the thumb screws
- 3. Position the **Crosshead** to its starting position for the test using **Jog** $\Delta \nabla$ and **Fine Jog** controls

NOTE: ALWAYS RESET EXTENSION GAUGE LENGTH AFTER JOGGING OR MANUALLY CHANGING POSITION OF CROSSHEAD BEFORE STARTING TEST

- 4. Determine how you would like to measure strain (if applicable)
 - a) "Extension" is determined by the location of the Cross Head (default)
 - b) "Strain 1" is determined by *Extensometer* via the knife edge distance

VI. Running Test – 2/3

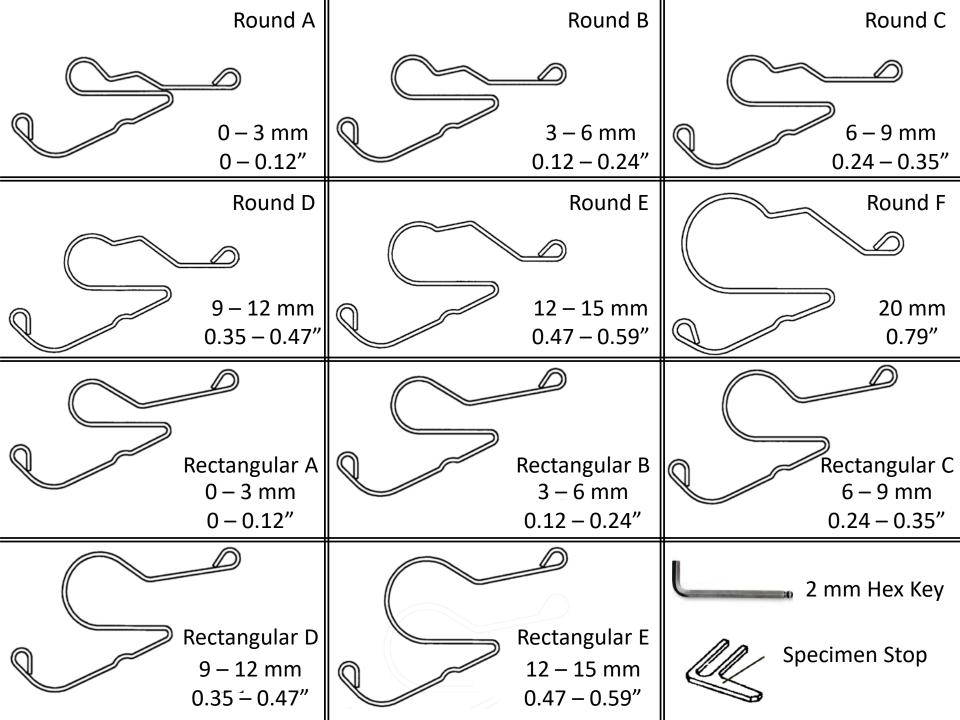
- 5. Collect all *Specimens* together that will make up your sample and identify each *Specimen* (e.g. with markings) by 1, 2, 3....
- 6. Load your *Specimen* appropriately into installed fixture or grip and close door
- 7. Click "*Balance All*" or if desired, click on individual measurements to be balanced (e.g. *Load, Strain, Gauge Length*)

- 10. Click *New Sample > Select Method* in the navigation bar
- 11. Click *Browse…* to find desired test method file, click *Open*
- 12. Input desired *Sample Name* and determine the location to save the file in *Location* field, click *Next*

VI. Running Test – 3/3

- 13. Click on *Start* button to start your test
- Your test will begin and will end automatically based on your chosen "End 14. Test" criteria
- 15. If your test does not trigger the "*End Test*" criteria, you can stop the test yourself by clicking on the **Stop** button
- 16. Safely remove your sample
- If you press the Return button, it will return your crosshead 17. back to the Zero extension value
- 18. Clicking on *Save* or *Save As* to continue your test later
- Load your next sample (if any) or click on *Finish* will end 19. all your tests and generate your report and raw files

P



VII. Cleanup – 1/1

- 1. Remove *Specimen* from the installed grip or fixtures
- 2. Remove the *Preload* if performing Tension tests, see *II.C. Preloading*
- 3. Remove any installed grip or fixtures
- 4. Return all components back to their respective storage drawers and boxes
- 5. Clean up any broken or specimen debris around the Instron
- 6. Turn off the software by clicking on the *Exit* button

7. Sign-out of your *ENGR account*

