Raman Training Notebook

Lab Manager: Dr. Perry Cheung
MSE Fee-For-Service Facility
Materials Science and Engineering
University of California, Riverside

December 4, 2019 (rev. 2.1)

Before you begin...

- □ Receive a user name and temporary password for Faces scheduling
 □ Identify your ENGR username and Password from Systems
 □ If you don't have an ENGR account, send me the following:
 □ Full name
 □ Principal Investigator (PI)
 □ SID
 □ email
- ☐ Coordinate a time with the lab manager for training
- ☐ Schedule a 1 hour block on Faces for your training

Raman Operation

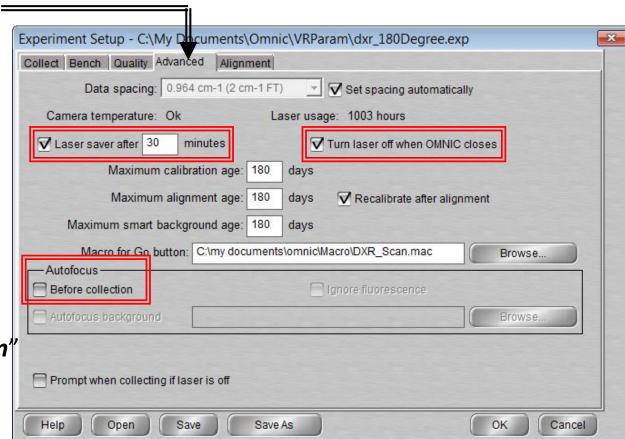
- I. Initiate Software
- II. Selecting Sample Holder
- III. Sample Holder Alignment
- IV. Collection Parameters
- V. Collect Background
- VI. Collect Sample
- VII. Collect Sample Holder
- VIII. Saving Data
- IX. Background Subtraction
- X. Manual Baseline Correction
- XI. Cleanup

I. Initiate Software – 1/3

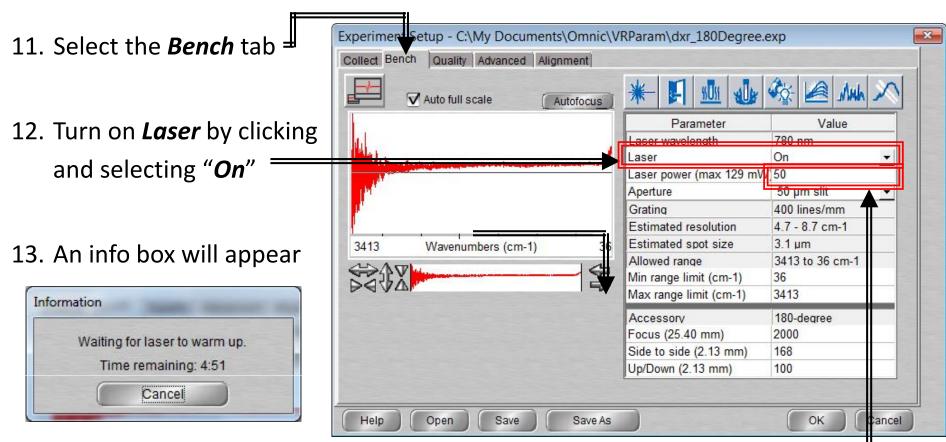
1. Double left-click on the **OMNIC for Dispersive Raman** icon

- 5. A dialogue showing "Resetting Step Motors" may appear
- 6. Select Collect -> Experiment Setup

 at the top window


 ↑ OMNIC [Window 1]

 ☐ File Edit Collect View Process Analyze Report Window Help


 Experiment: Default DXR 180-degree accessory (dxr_180Degree.exp)

I. Initiate Software – 2/3

- 7. Select the **Advanced** tab =
- 8. Confirm "Laser saver" is checked and set to "30 minutes"
- 9. Confirm "*Turn off laser*" is checked
- 10. Confirm Autofocus option "Before Collection" is unchecked

Initiate Software – 3/3

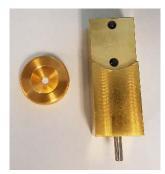
14. Set Laser power to "50" as a suitable level by clicking and entering value =

15. The laser will only be emitted when the enclosure is closed

II. Sample Holder – 1/2

- 1. Depending on your sample, the sample holder and preparation will vary...
- 2. Several sample holders are available for use located in the storage container
- 3. CLEAN UP AFTER EACH USE AND WIPE DOWN!

NMR Tube Holder


Large quantities of liquid and powder

Capillary Tube Holder

Small quantities of liquid and powder

Thin Film Holder

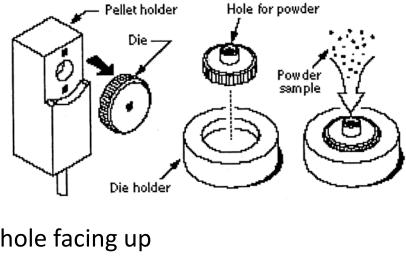
Thin film or thin planar samples

Flat Bulk Sample Holder

Flat bulk samples too large for the Thin Film holder

Bulk Sample Holder

Irregular shaped bulk samples


II. Sample Holder: Pellet – 2/2

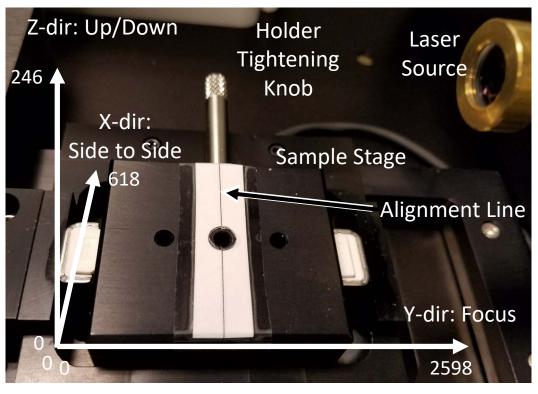
- 1. Remove the *Die* from *Pellet Holder*
- 2. Place **Die** in **Die Holder**
- 3. Fill hole in *Die* with the powdered sample

5. Insert *Punch* into hole at top of *Cylinder* and apply force with hand to push *Punch* down as far as it will go

- 6. Remove *Cylinder* from *Punch Die*
- 7. Mount *Die* on *Pellet Holder* so stem of die is inserted into hole in the *Pellet Holder*

- Punch

Pellet holder

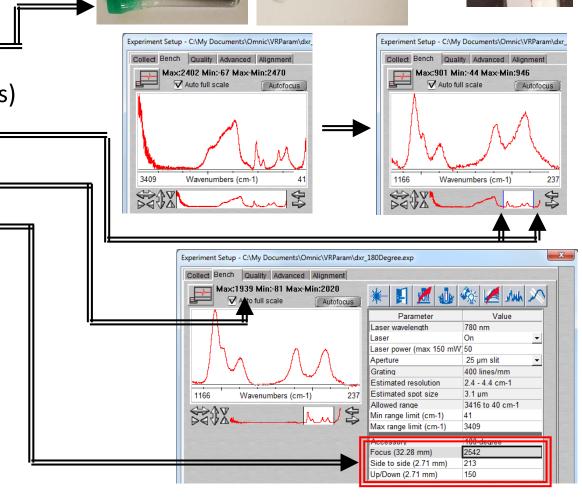

Small hole

🛥 Cylinder

III. Sample Holder Alignment – 1/3

- Depending on your Sample
 Holder, the appropriate *Focus* position will be different
- Double-Click and enter the following preliminary settings for your Sample Holder II III

		L
Accessory	180-degree	
Focus (18.81 mm)	1481 🔘	
Side to side (2.46 mm)	194	
Up/Down (2.46 mm)	130	


	NMR Tube	Capillary Tube	Thin Film	Flat Bulk	Bulk	Pellet Holder
Focus	2542	2432	2356	2397	1570	2475
Side to Side	168	168	168	168	168	168
Up/Down	150	160	180	151	108	180

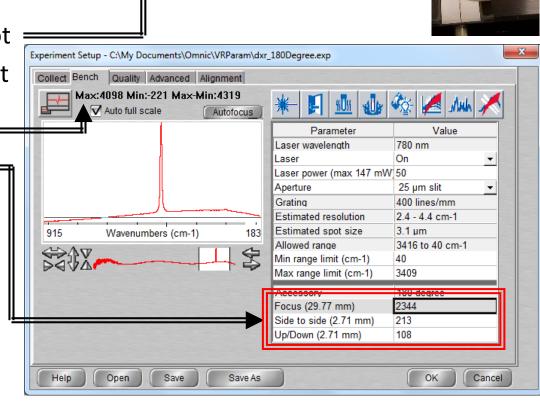
III. Sample Holder Alignment – 2/3

- 3. Position the NMR and Capillary Tube sample holders using the alignment line as a guide and tighten the holder knob
- 4. Insert the 50 wt% H_2SO_4 reference samples =
- Focus on any relevant peak(s)by moving the cursors ______
- 6. Achieve the max signal ——by optimizing the settings —

Sensitivity of the settings:

- \pm 1 Focus = \pm 10 μm
- \pm 1 Side to Side = \pm 20 μm
- \pm 1 Up/Down = \pm 20 μ m

III. Sample Holder Alignment – 3/3

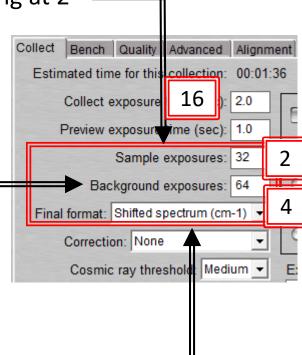

- 7. Place your sample or Si reference sample into position for the Thin Film, Bulk Flat, and Bulk sample holder
- 8. Position the Thin Film and Bulk Flat sample holder using the alignment line as a guide and = tighten the holder knob
- 9. The Bulk sample holder does not require any additional alignment
- 10. Achieve the max signal ______
 by optimizing the settings ____

Sensitivity of the settings:

 \pm 1 Focus = \pm 10 μ m

 \pm 1 Side to Side = \pm 20 μ m

 \pm 1 Up/Down = \pm 20 μ m



IV. Collection Parameters – 1/6

- Bench Quality Advanced Alignment Select the **Collect** tab = Estimated time for this collection: 00:01:36 Collect exposure time (sec): 2.0 Preview exposure time (sec): 1.0 Sample exposures: 32 Estimated time for collection is shown here Background exposures: 64 Remember to check this value after changing collection parameters! Determine the *Collect exposure time (sec)* – recommend starting at 2 sec Increase value to improve signal-to-noise ratio until desired result is achieved Note: If CCD overflow occurs, increase # of exposures instead
- 4. Determine the *Preview exposure time (sec)* recommend 1 sec <u></u>
 - This value also determines the exposure time for the live display on Bench tab

IV. Collection Parameters – 2/6

- 5. Determine # of *Sample exposures* recommend starting at 2
 - Increase value to improve signal-to-noise ratio
 - Note: For weak signals, set longer Collect exposure times instead of increasing # of Sample exposures
- 6. Determine # of *Background exposures* recommend greater value than # of *Sample exposures*
 - Increase value to avoid having background add noise to the spectrum
- 7. Select the *Final Format* recommend Shifted spectrum (cm⁻¹)
 - Raman spectrum (nm): nanometer vs Raman intensity
 - Raman spectrum (cm⁻¹): wavenumber vs Raman intensity
 - Shifted spectrum (cm⁻¹): shifted wavenumber vs Raman intensity
 - Photoluminescence (nm): nanometer vs emission

IV. Collection Parameters – 3/6

- 8. Select desired *Correction* recommend None =
 - Raman Efficiency corrects for intensity differences related to frequency
 - Fluorescence corrects the effect on baseline curvature due to fluorescence
 - Use Polynomial specify a polynomial of order 1 to 6 for the operation
 - Default is 5th order polynomial
 - Use Reference File specify a reference spectrum that contains fluorescence artifacts you want removed
 - Reference files and spectra must have the same resolution and final format

- 9. Select desired *Cosmic ray threshold* recommend Medium
 - None will not reject cosmic ray spikes
 - Low rejects random cosmic ray spikes with low intensity and higher intensity
 - Medium rejects random cosmic ray spikes of least moderate intensity
 - High rejects only random cosmic ray spikes of high intensity

IV. Collection Parameters – 4/6

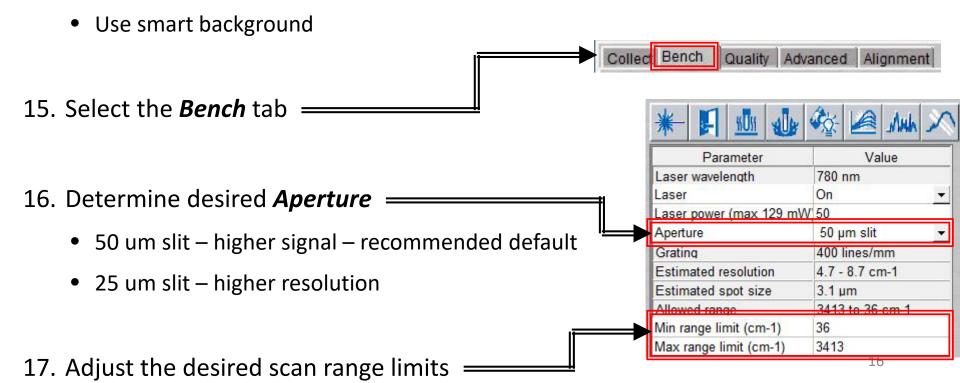
- 10. Select desired *Photobleach time (min)* =
 - Fluorescence is an emission process and causes some samples to give off a strong,
 broad emission when illuminated by the excitation laser
 - Photobleaching can be used to reduce sample fluorescence and may be occurring if baseline offset decreases on successive exposures
 - Estimate the appropriate photobleach time by observing how long it takes the baseline of the spectrum to reach a steady state in the Bench tab

12. Confirm *Auto exposure* is not checked

Desired S/N: 100

0.0

Photobleach time (min):


Preview data collection

Maximum collect time (min): 2

IV. Collection Parameters – 5/6

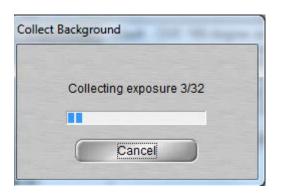
- 13. Confirm *Save automatically* is not checked

 | Save automatically | Base name: | Save automatically | Save automatically | Save automatically | Base name: | Save automatically | Save automati
 - Maximum age for background default choice and recommend 120 minutes

IV. Collection Parameters – 6/6

- Collect Bench Quality Advanced Alignment 18. Select the **Quality** tab ✓ Use spectral quality checks 19. Confirm all checks are selected = Collect Checks ▼ Collect checks 20. Correct the following if issues are found: ▼ CCD overflow • *CCD overflow* – reduce exposure time Spectrum Checks-▼ Spectrum checks or decrease aperture size ✓ Sample heating ▼ Fluorescence **Sample heating** – reduce laser power, ✓ Sample burning ▼ Photobleaching exposure time, and # of exposures ▼ Weak signal Minimum: **Fluorescence** – apply correction
 - Sample burning reduce laser power
 - **Photobleaching** include **Photobleaching time** in **Collect** tab
 - Weak signal check focus is correct, increase exposure time, increase aperture size, and increase laser power

21. Click *Save* and *OK* :

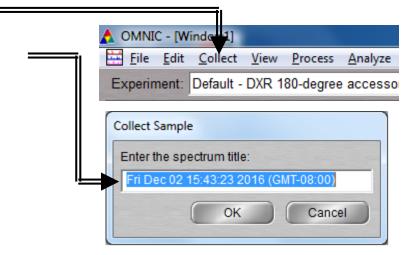

17

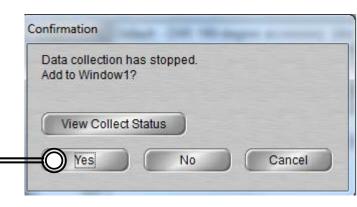
V. Collect Background – 1/1

Select Collect -> Collect Background

Note: Background measures the response of each pixel in the CCD with camera shutter closed, and does not take into account the sample holder background signal

2. A dialogue box will appear indicating the background exposure progress




OMNIC - [Window1]

File Edit Collect View Process

VI. Collect Sample – 1/1

- Select Collect -> Collect Sample
- Enter title for collected spectrum, click OK
- 3. A live display of the collection will appear
- 4. The following shows the collect status indicator during your collection
- O The spectrum has passed all quality checks
- O The spectrum has failed a spectral quality check but not serious
- There is a problem with quality of spectrum, correct problem before collecting the spectrum again
- 5. The current background will be automatically subtracted from sample data
- Choose to add the collected spectrum in window specified, click **Yes**

VII. Collect Sample Holder – 1/1

- If your sample is transparent or are using a secondary sample holder like a glass NMR or capillary tube, you will need to collect background spectrum from primary sample holder
- Remove sample from the sample holder and insert an empty glass NMR or capillary tube or glass slide if applicable
- 3. Select Collect -> Collect Sample
- 4. Enter *title* for collected spectrum, click *OK*
- 5. A live display of the collection will appear
- 6. The following shows the collect status indicator during and after your collection

 - The spectrum has failed a spectral quality check but not serious
 - There is a problem with quality of spectrum, correct problem before collecting the spectrum again
- 7. The current background will be automatically subtracted from sample data
- 8. Choose to add the collected spectrum in window specified

Cancel

<u>File Edit Collect View Process Analyze</u>

Experiment: Default - DXR 180-degree accessor

Collect Sample

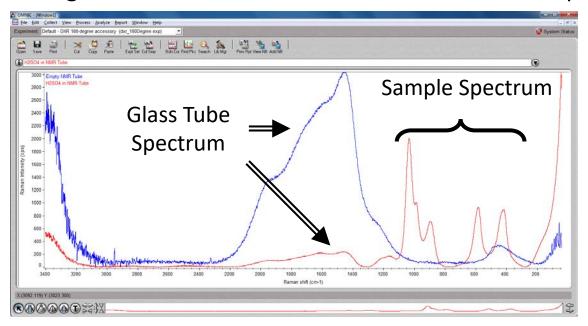
Enter the spectrum title:

Fri Dec 02 15:43:23 2016 (GMT-08:00)

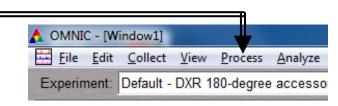
OK

VIII. Saving Data – 1/1

- 1. Specific spectra can be selected using the S selection tool at the bottom of window and clicking on it or selecting No spectra selected from dropdown
- 2. Multiple spectra can be selected/deselected by holding down the *Ctrl* key and clicking spectra
- Click File -> Save to save spectrum (e.g. default is SPA)
 using the current filename
- 4. Click *File -> Save As* to save a spectrum into another file type (e.g. CSV or TIFF)
- 5. Click *File -> Save Group* to save more than one spectrum as a group in one file having file extension .SPG to open later
- 6. Click *File -> Save Current Background* to a named file if desired for later referencing or processing (optional)

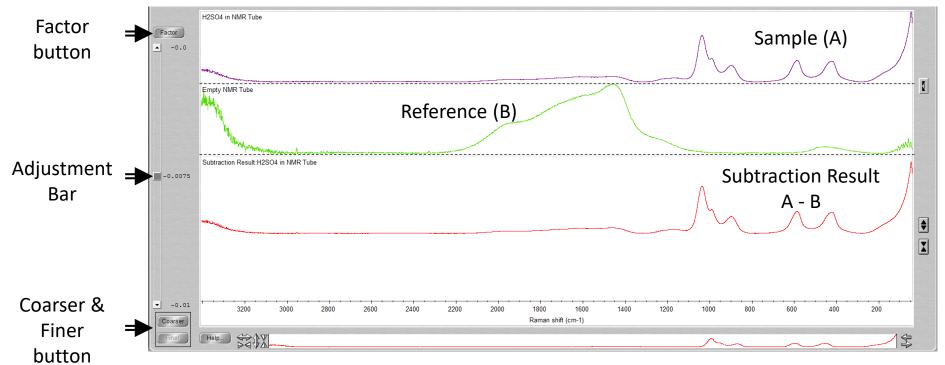

NIC - [Window1]

Edit Collect View Process


Experiment: Default - DXR 180-degree accesso

IX. Background Subtraction – 1/3

 $1. \quad \mathsf{Perform}$ a background subtraction to remove effects of a sample holder



- 2. Select the sample spectrum (A) first, then hold *Ctrl* key and select the reference spectrum (B)
- 3. "Two spectra selected" appears at top
- Click Process -> Subtract

IX. Background Subtraction – 2/3

5. The subtract window appears with the sample spectrum (A) in top pane and reference spectrum (B) below it

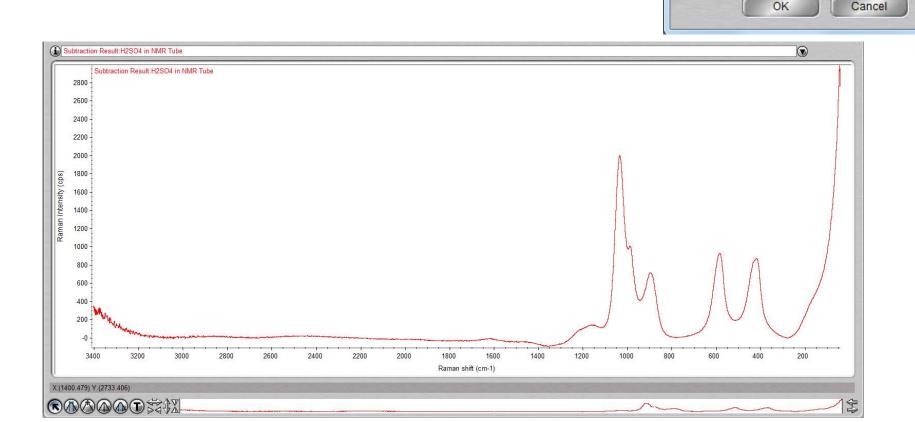
- 6. Click and move Adjustment Bar to achieve desired subtraction
- 7. Click *Coarser* or *Finer* to increase or decrease the sensitivity of adjustments
- 8. Click *Factor* button to enter in a specific factor value for subtraction

IX. Background Subtraction – 3/3

Add to a new window dd to a new window

New Window

Window2

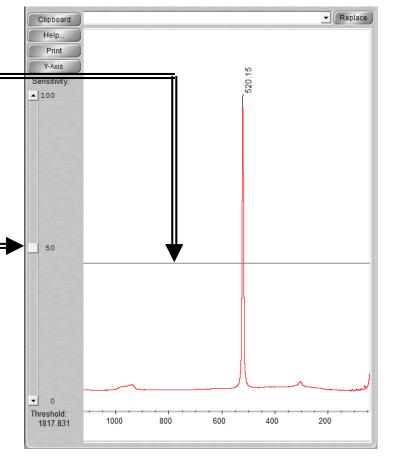

Enter a title for the window:

Add to Window1

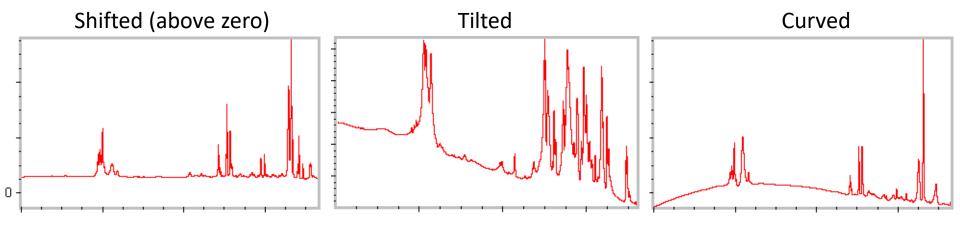
Click on top dropdown to determine where the new subtracted spectra will appear Replace the original spectrum

10. Click **Add** to add to desired window

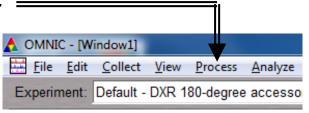
11. If new window is selected, you will need to name it


X. Peak Identification -1/1

Click on "Find Pks" button at the top =


 Click the spectrum window to adjust the *Threshold* position on where — peaks are to be considered

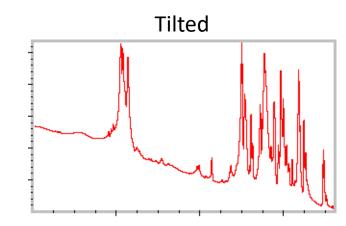
3. Adjust the *Sensitivity* button to separate peaks from noise

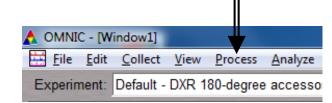


XI. Manual Baseline Correction – 1/3

1. If your spectra has a shifted, tilted, or curving baseline, you can choose to correct it manually using the software

- 2. Select the spectrum you wish to correct
- 3. To correct a baseline, click **Process -> Baseline Correct**



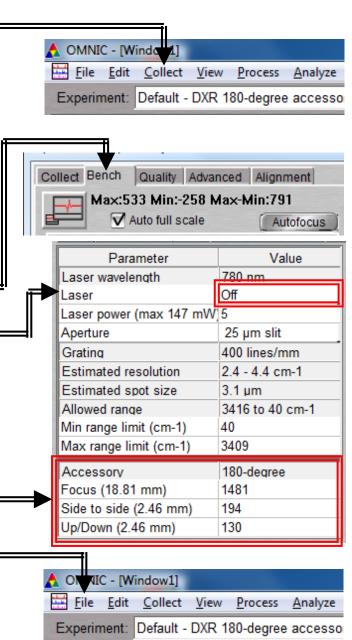

XI. Manual Baseline Correction – 2/3

- 4. Select an algorithm from the drop-down list box near upper-left corner of window
 - o *Linear*: For tilted or elevated baselines
 - o *Spline*: For curved baselines
 - o *Polynomial*: Suitable for all, with max order of 6
- 5. Select **Auto Y** to have baseline points coincide with points on spectrum
- 6. Click as few as necessary to straighten pronounced curves or slopes in upper pane
- 7. Add corrected spectrum to new spectral window

XI. Manual Baseline Correction – 3/3

- 8. You may choose to let the software automatically correct a tilted baseline
- 9. Select the spectrum you wish to correct

- 11. Click *Edit -> Options*
- 12. Set the *Polynomial Order and Number of Iterations* in the *Process* options


X. Cleanup -1/1

- Remove the sample and holder from the stage
- 2. Clean up the sample holder and return back to cabinet
- 3. Select *Collect -> Experiment Setup* and click *Bench* tab
- Click on Laser and turn to "Off"
- Reset the position of stage to: ——
 Focus = 2000

Side to side = 168

Up/Down = 100

- 6. Click on *File -> Exit* to shut down the software
- 7. Log off of your ENGR account

