Polisher Training Notebook

Lab Manager: Dr. Perry Cheung
MSE Fee-For-Service Facility
Materials Science and Engineering
University of California, Riverside

February 1, 2023 (rev. 1.1)
Before you begin...

- Complete the required safety training modules on UC Learning
 - Laboratory Safety Fundamentals
 - Hazardous Waste Management
 - Compressed Gas Safety

- Submit a copy of your Training Transcript to Lab Manager

- Review the MSE Policies and Regulations

- Fill out the MSE 150, 250, 309 FAU Authorization Form with PI signature

- Provide your ENGR username to Lab Manager to set up Faces account

- Arrange a time for training with Lab Manager

- Schedule your reservation on Faces for your training
Allied MetPrep 3 Polisher Operation

I. Polisher Layout
II. Control Panel
III. Grinding
IV. Polishing
V. Cleaning Samples
VI. Powerhead Positioning
VII. Manual Polishing
VIII. Semiautomatic Polishing
IX. Adjustable Parameters
X. Individual Force Setup
XI. Central Force Setup
XII. Cleanup
I. Polisher Layout – 1/3

Perpendicular = Off
Parallel = On

Power Head

Handle

Water Nozzle

Platen

Emergency Stop

Release Latch

Positioning Lever

Sample Holder

Control Panel
I. Polisher Layout – 2/3

Water Dispensing requires pump to be turned on first!

Turn Knob to “Pump On” if water is needed

Remember to Turn Knob to “Pump Off” when finished!
I. Polisher Layout – 3/3

Sample Holder for Central Force (CF) - *Grinding*

Sample Holder for Individual Force (IF) - *Polishing*

Set-screws for Sample

1.25” (25 mm) Sample Size

Drive Pin

Sample Loading/Unloading Fixture
II. Control Panel – 1/2

Jog: Activates and deactivates *Platen* rotation
- used to clean platen or to apply diamond suspension
- also used to rotate *Platen* for manual grinding/polishing

Water: Activates and deactivates water
- will override any setting for water in automatic operation

Stop: Deactivates every function during operation

Start: Activates the step toward which the arrow is pointing on display

Emergency Stop: Shuts off all power and stops operation of machine
- use only during EMERGENCY to prevent injury to operator or damage to instrument
- turn clockwise on red knob to restore power
II. Control Panel – 2/2

Step:
- Accesses the **Step Menu**
- steps will be displayed
- selection arrow designates desired **Step**

Program: Used to program individual parameters within each **Step**

Select:
- Used to toggle selection arrow in display windows
- navigate to different screens
- select **Step** for programming

Arrows:
- **(Jog Mode)** will increase and decrease **Platen Speed**
- **(Step Parameters)** will scroll up and down and change parameters to desired value
III. Grinding – 1/1

1. Perform **Grinding** FIRST to:
 - Remove any deformation left over from the sectioning
 - Expose specific regions in the sample from the bottom of the **Sample Mount**

2. Use the **Central Force** functionality for **Grinding** purposes

3. Speed (most commonly used settings):
 - **Platen Speed** = 200 – 300 RPM
 - **Sample Speed** = 150 RPM

4. Force (most commonly used settings):
 - For 1.25” (32 mm) Sample Mount: 4 – 6 LbF (per sample)
 - E.g. 3 Samples -> 12 – 18 LbF **Total Force**
 - E.g. 6 samples -> 24 – 36 LbF **Total Force**

5. Abrasive:
 - 8” Silicon Carbide Paper are provided in 180, 320, 600, and 1200 Grit
IV. Polishing – 1/1

1. Perform **Polishing** **AFTER** **Grinding** to:
 - Remove scratches from grinding and any metallurgical deformation

2. Use the **Individual Force** functionality for **Polishing** purposes

3. Speed (most commonly used settings):
 - **Platen Speed** = **Sample Speed** = 150 RPM

4. Force (most commonly used settings):
 - For 1.25” (32 mm) Sample Mount: 4 – 6 LbF (per sample)

5. Polishing Cloth + Abrasives:
 - **Polishing Cloths** for specific **Abrasives** are provided
 - **Polycrystalline Diamond Suspensions**:
 3 μm, 1 μm, 0.5 μm, and 0.05 μm are provided

Note: Only use the designated Suspensions with the designated Polishing Cloth!
V. Cleaning Samples – 1/1

1. Samples **MUST** be cleaned after every *Grinding* and *Polishing* step

2. Failure to properly clean each *Sample* before next step will transfer *Abrasive Particles* onto subsequent *Grinding Paper* and *Polishing Cloth*

 Note: If Polishing Cloths are CONTAMINATED, they must be replaced $$$

3. Remove the *Sample Holder* to clean **BEFORE** switching *Grinding Paper* or *Polishing Cloths* to avoid contamination
VI. Powerhead Positioning – 1/1

1. Loosen the *Positioning Lever* to adjust and swivel the position of the *Powerhead*

2. Push the *Release Latch* to lift up the *Powerhead*

3. Use the *Powerhead Handle* to raise and lower the *Powerhead* and adjust position
VII. Manual Polishing – 1/1

1. Press the **Jog** button ![Jog button](image) to initiate *Manual Grinding* using the **Platen** only.

2. During this operation, the **Platen** always rotates *clockwise*.

3. Press the **Up** and **Down** arrows ![Arrow buttons](image) to change the **Platen RPM**.

4. Press the **Water** button ![Water button](image) to stream water onto the **Platen**.
VIII. Semiautomatic Polishing – 1/1

1. Press the **Steps** button ![Steps](image1.png) to program **Semiautomatic Polishing** parameters

2. Press the **Up** and **Down** arrows ![Up Down](image2.png) to scroll to desired **Program Step**

3. Press **Select** button ![Select](image3.png) to enter settings menu

4. To change the value of any setting, scroll to that parameter and press the **Program** button ![Program](image4.png)

5. A “?” will appear next to parameter and can be changed using **Up Down** arrow buttons

6. Press **Program** button ![Program](image4.png) to set into memory
IX. Adjustable Parameters – 1/2

• Sample RPM:
 displays rotation speed of *Sample Holder*
 - variable between 0 and 150 RPM {with 10 RPM increments}

• Force:
 allows toggling between *Central Force* and *Individual Force* modes

• Force (LbF):
 (Central Force) will display *Total Force* acting on sample holder
 (Individual Force) will display the *Individual Force* acting on each sample

• Platen RPM:
 displays rotation speed of *Platen*
 - variable between 40 and 600 RPM

• Mode:
 Comp = indicates *Platen* and *Sample Holder* rotates in same *complimentary* clockwise direction
 - used for most applications

 Contra = indicates *Platen* and *Sample Holder* rotates in *opposite* direction
 - used for aggressive material removal during *Grinding*
IX. Adjustable Parameters – 2/2

• **Time:** displays the total time that step will run before automatically stopping
 - adjustable between 0 and 120 minutes {in 15 second increments}

• **Fluid**
 - **(Off)** no water is activated when step is started
 - **(Water)** – water will be dispensed from nozzle
 - generally used for grinding applications and to flush/rinse the *Platen*

• **Rinse**
 - allows a rinse cycle to be activated in the last **XX** seconds of step
 - commonly used to rinse cloth and samples with water

• **Frc Reduce**
 - **(On)** will reduce the force applied at the beginning AND end of step
 - gradual application of force produces more shallow scratch and protect delicate samples from cracking

• **Reduce Time**
 - defines duration of force reduction in **XX** seconds
 - only applicable if **Frc Reduce** is set to “**On**”

• **Reduce %**
 - defines percentage that force that will be decreased during **Frc Reduce**

• **Frc Start**
 - **(On)** will reduce force by **70%** in first **10** seconds as “soft start”
 - helps protect samples from damage to sudden application of full force
X. Central Force Setup – 1/5

• Central Force (CF) holder requires a **MINIMUM** of 3 sample mounts
• Not recommended for precision/site specific applications
• Samples need to be equally positioned around center of sample holder to polish evenly and remain balanced

Note: Failure to balance will damage instrument, sample holder, or even operator!

1. Position the **Powerhead** in the **Lifted Up** position

2. Check if **Diverter Valve** is already dis-engaged (flush with surface)
 • **If already dis-engaged, continue to Step 6**

3. If not, locate the “V” stamped into the cylinder
X. Central Force Setup – 2/5

4. Take the \(\frac{1}{4} \)" **Allen Wrench** and insert into hole

5. **Rotate counter-clockwise** until **Diverter Valve** is disengaged and slides down cylinder

 Note: Failure to unlock it will damage cylinder!

6. Position the CF fixture so the **Drive Pin** is aligned

7. Take a **5/32 Allen Wrench** and securely tighten the set-screw
X. Central Force Setup – 3/5

8. Loosen the **Positioning Lever** and swivel the **Powerhead** and lower the **Mount Holder** so it is located between the **Edge** and **Center** of the **Platen**

9. Confirm that “**Force**” setting is set to “**Central**”

10. Use the provided **Sample Loading Fixture** to set the proper depth of mounts when secured into the **CF Sample Holder**
X. Central Force Setup – 4/5

11. The **Sample Mounts** MUST be correctly balanced on the **Sample Holder**
 - 3 Sample Mounts (shown) or
 - 6 Sample Mounts

12. If necessary, provide “**Blanks**” to occupy empty spaces so **Sample Holder** is properly balanced
 - 4 Sample Mounts + 2 Blanks (shown)

13. Secure the **Sample Mounts** by applying pressure to the backside of the **Sample Mount** and tightening the set-screw using provided **1/8” Allen Wrench**
X. Central Force Setup – 5/5

14. To unload *Sample Mounts*, flip the *Sample Loading Fixture* to *Unloading* position

15. Insert the *Sample Holder* onto the *Sample Unloading Fixture* with the *Sample Mounts* facing upward

16. Inspect the *Samples* first before unloading *Samples*

17. Remove the *Samples* from the *Sample Holder* by loosening the set-screw with provided *1/8” Allen Wrench*
XI. Individual Force Setup – 1/3

• Individual Force (IF) holder allows up to 3 mounts to be prepared simultaneously

• Each mount floats independently and force is applied individually to each location

• IF functionality is more suitable for precision/site-specific applications

1. Position the **Powerhead** in the **Lifted Up** position

2. Check if **Diverter Valve** is already engaged (sunken in)
 - If already engaged, continue to **Step 6**

3. If not, locate the “V” stamped into the cylinder
XI. Individual Force Setup – 2/3

4. Take the ¼” Allen Wrench and insert into hole and press upward

5. Rotate clockwise until Diverter Valve locks into place for IF

Note: Failure to lock it into place will damage IF holder!

6. Position the IF fixture so the Drive Pin is aligned

7. Take a 5/32 Allen Wrench and securely tighten the set-screw
XI. Individual Force Setup – 3/3

8. Loosen the **Positioning Lever** and swivel the **Powerhead** and lower the **Mount Holder** so it is located between the **Edge** and **Center** of the **Platen**

9. Confirm that “**Force**” setting is set to “**Single**”

10. During operation individual **Pistons** will extend from cylinder body to apply pressure to back of mounts

11. The **Pistons** above empty locations will stop above **Platen** surface automatically
XII. Cleanup – 1/1

1. Remove and clean *Sample Holders*

2. Return back to appropriate drawer

3. Rinse the *Polishing Cloths* and return to appropriate drawer

4. Rinse the *Platen* and *Chamber* thoroughly

5. Keep the *Powerhead* in the *Lifted Up* position

6. Swivel the *Powerhead* away from the *Platen*

7. Record your usage on the *Sign-in Sheet* indicating all consumables used