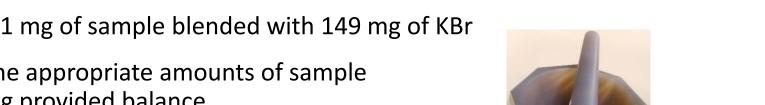
FT-IR Training Notebook: Transmission

Lab Manager: Dr. Perry Cheung MSE Fee-For-Service Facility Materials Science and Engineering University of California, Riverside

November 14, 2019 (rev. 2.1)

Before you begin...


- Receive a user name and temporary password for Faces scheduling
- Identify your ENGR username and Password from Systems
 - □ If you don't have an ENGR account, send me the following:
 - Full name
 - Principal Investigator (PI)
 - UCR NetID
 - 🖵 email
- Coordinate a time with the lab manager for training
- Schedule a 2 hour block on Faces for your training

Transmission FT-IR Operation

- I. Sample Preparation
- II. Pellet Press
- III. Pellet Retrieval
- IV. Sample Holder
- V. Smart Transmission Accessory
- VI. Initiate Software
- VII. Collect Background
- VIII. Collect Sample
- IX. Saving Data
- X. Peak Identification
- XI. Cleanup
- XII. Library Search

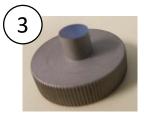
I. Sample Preparation -1/1

- Retrieve *Agate mortar and pestle* from 1. the storage box in the drawer
- Recommend **15 mg** of *Sample Blend* 2. (sample + KBr) torqued at **15 ft-lbs** for about a minute for a clear pellet
- A 1:149 sample:KBr Sample Blend is 3. recommended to achieve necessary transparency of KBr
 - Example: 1 mg of sample blended with 149 mg of KBr
- Weigh out the appropriate amounts of sample 4. and KBr using provided balance
- Use provided **Agate mortar and pestle** to 5. grind and mix the powder blend

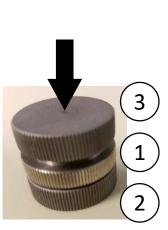
NOTE: DO NOT USE ALL 150 MG OF BLEND FOR PELLET, ONLY USE ABOUT **15 MG** FOR EACH PELLET!!!

5. Weigh out ~ 15 mg of the *Sample Blend* (sample + KBr) using provided balance

II. Pellet Press – 1/4


1. Retrieve the following items from the storage box:

Collar


2

Short Anvil

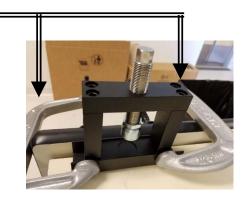
Long Anvil

- 2. Place the *Collar* above the *Short Anvil* first
- 3. Carefully insert the *Sample Blend* into the *Collar Assembly*
- 4. Tap the *Collar Assembly* lightly to spread the powder uniformly across the *Collar Assembly*
- 5. Insert the *Long Anvil* on top of the *Collar Assembly*

2

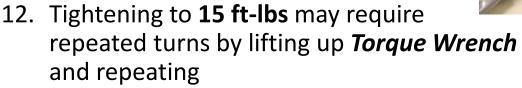
II. Pellet Press – 2/4

6. Tighten the *C-clamps* if loose to prevent *Pellet Press* from moving


Insert the *Collar Assembly* into the *Pellet Press* and align it with the recessed circle

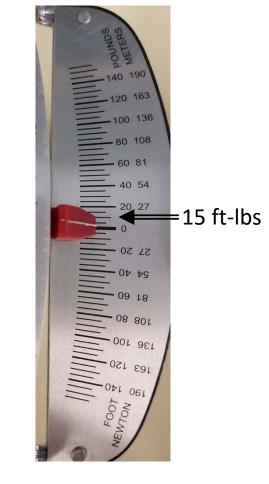
8. Hand-tighten the *Nut* at the top


9. Check and adjust the **Press** to be parallel with the top of the **Long Anvil** face



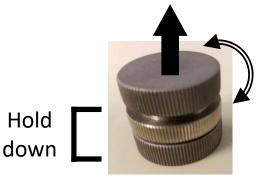
II. Pellet Press – 3/4

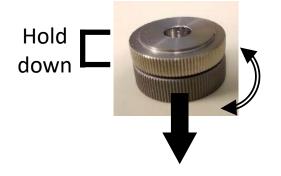
- 10. Retrieve the *Torque Wrench* from the drawer
- Use the *Torque Wrench* and tighten clockwise until
 15 ft-lbs of torque is applied



NOTE: Torque-wrench is non-ratcheting, DO NOT turn counter-clockwise to achieve more torque

13. Once **15 ft-lbs** of torque is achieved, **HOLD** this position for at least **1 minute**





II. Pellet Press – 4/4

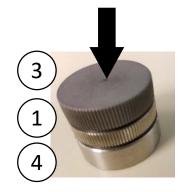
- 14. Slowly release the torque by untightening **counter-clockwise** using the **Torque Wrench**
- 15. Once the **Press** is loose, you may continue to loosen and raise the **Press** up by hand
- 16. Carefully take the entire *Collar Assembly* out of the *Pellet Press*
- 17. Carefully hold both *Lower Anvil* and *Collar* together and twist the top *Upper Anvil* and pull out
- 18. Repeat this time holding the *Collar* and twist the *Lower Anvil* and pull out
- 19. The *Collar* should now have a clear and whole *Pellet* for analysis
- 20. If the *Pellet* is not uniformly clear, repeat Steps 2 18

III. Pellet Retrieval – 1/1

2

1

Short Anvil


Long Anvil

3

- 1. If you wish to keep the pellet for future examination, retrieve the *Pellet Catcher* from the storage box
- 2. Place the collar with the *Collar* containing the *Pellet* above the *Pellet Catcher*
- 3. Center and align the *Collar* with the the *Pellet Catcher*
- 4. Insert the *Long Anvil* into the *Collar* and slowly push the *Pellet* out of the *Collar*
- 5. If done correctly, the *Pellet* should still be whole and inside the *Pellet Catcher*

IV. Sample Holder – 1/1

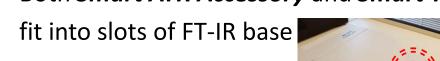
- 1. Retrieve either the *Collar Holder* or the *Pellet Holder* from the storage box
- 2. Insert the *Collar* with the sample into the *Collar Holder*

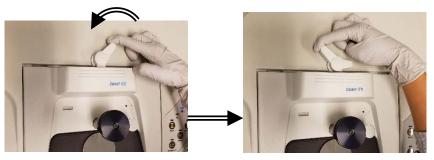
Collar Holder

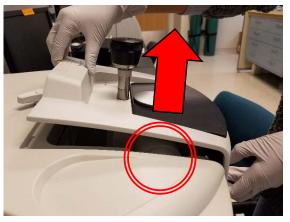
Pellet Holder

- 3. If you wish to scan a **13 mm** or **7 mm Pellet**, you will have to use the **Pellet Holder** instead
- Assemble the *Pellet Holder* with the magnetic strip that matches your pellet size (*13 mm* or *7 mm diameter Pellet*)
- 5. Sandwich the **Pellet** between the two magnetic strips as shown

V. Smart Transmission Accessory – 1/3


- The Smart ATR Accessory is the default accessory installed 1.
- Please contact the Lab Manager if you need 2. to use the *Smart Transmission Accessory* for Transmission FT-IR measurements
- The *Smart ATR Accessory* contains mirrored optics that need = 3. to be carefully taken care to avoid damage and contamination
- Both **Smart ATR Accessory** and **Smart Transmission Accessory** have nozzles to 4.

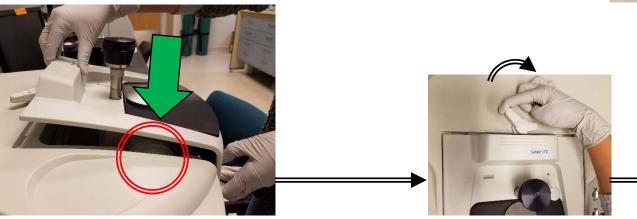




V. Smart Transmission Accessory – 2/3

- 5. To remove the *Smart ATR Accessory,* move the lock to the *Unlocked* position
- Carefully remove *Smart ATR Accessory* by gently pulling upward and position nozzles out of slots
- 7. Carefully place aside and KEEP AWAY FROM CONTAMINANTS!
- 8. Carefully insert the *Smart Transmission Accessory* by gently aligning the nozzles into the slots

V. Smart Transmission Accessory – 3/3


9. Once firmly seated into the FT-IR base, move the lock to *Locked* position

10. Remember to remove *Smart Transmission Accessory* and reinsert the *Smart ATR Accessory* before leaving...

VI. Initiate Software – 1/10

- 1. Double left-click on the OMNIC software icon for FT-IR
- 2. Ignore the *Standards Expiration Warning* and click *OK* if present
- 3. Close the *Thermo Scientific OMNIC Help* popup window if present

4. The *OMNIC main window* will now appear

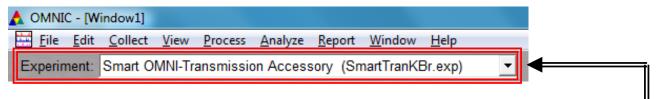
5. Confirm that *Smart OMNI-Transmission Accessory (SmartTranKBr.exp)* appears in the Experiment window

😵 Thermo Scientific OMNIC Help

Contents Index Search

Hide

Print


6-

Options

A standard you are using for Performance Verification or ValPro Oualification

A standard is expired

VI. Initiate Software – 2/10

- 6. Select *Collect -> Experiment Setup* at the top window
- 7. Confirm that *Save interferograms* is *checked* =
 - Saving interferogram data lets you reprocess in case you want to restore the original data, even using a different background or changing parameter settings used
- 8. Confirm that *Save automatically* is *unchecked* —
- Set preferred *Background Handling* settings
 - Before every sample
 - After every sample
 - After 120 minutes (default)
 - Use specific file

Note: A new background will be requested if there is a change in resolution or data spacing of your sample spectrum!

ollect Bench Quality Advanced Diagnost	ic Configure
Estimated time for this collection: 00:00:23	File Handling
No. of scans: 16	Save automatically Save interferograms
Resolution: 4.	Base name: Donower 190800
Data spacing: 1.929 cm-1	-Background Handling
Final format: Absorbance 💌	O Collect background before every sample
Correction: None	O Collect background after every sample
Automatic atmospheric suppression	Collect background after 120 minutes
Preview data collection	O Use specified background file:
Use transmittance data during preview	Browse
Use fixed Y-axis limits in collect window	Collect 64 scans for the background
Min: 0.00 Max: 2.00	Experiment description:
Experiment title:	This is the default experiment file for the Smart OMNI-
Smart OMNI-Transmission Accessory	Transmission Accessory

OMNIC - [Winds 1] Eile Edit Collect View Process Analyz Experiment: Smart OMNI-Transmission Acce

VI. Initiate Software – 3/10

10. Select desired No. of scans – recommend starting at 16 scans

- Increase to optimize desired spectrum signal/noise
- Recommend increments of powers of 4 (e.g. 16, 64, 256, 1024,...)
- 11. Select desired *Resolution value* recommend 8 or 4
 - Decrease value to increase spectrum resolution
 - Decreasing value too much may result in increased noise!

Note: *Aperture* = *High resolution* if Resolution value is ≤ 2

- 12. Check Estimated time for collection
 - Time dependent on *No. of scans* and *Resolution*
- 13. Select desired Final format
 - % Transmittance
 - Absorbance (default)
 - Etc...

Note: Convert to other Y-axis units in *Process* menu

Collect	Bench	Quali	ity Advance	d Dia	gnost
Estir	nated tim	e for t	his collectio	on: 00:0	00:23
r	No. of sca	ans:	16		
	Resolut	ion: 🔤	4.		-
C	ata spac	ing:	1.929 cm-1		
	Final form	nat: 🖟	Absorbance		•
_	Correct	ion: I	Vone		-
Pre	eview data	a colle	heric suppre ction data during		
-			nits in collec		
	Min: 0.0	0	1	2.00	
1			Max:	2.00	-
	eriment tit			2.00	

VI. Initiate Software – 4/10

- 14. Select desired *Correction type* to *None*
- 15. Decide if *Automatic atmospheric suppression* is desired
 - Effects of water vapor and carbon dioxide will be automatically suppressed via quantitative model
- NOTE: Do NOT use this feature if atmospheric conditions change very slowly, only use if conditions change rapidly
- 16. Check *Preview data collection*
 - Views preliminary data before start of sample for verification
- 17. Decide if you to preview data collection using % transmittance
 - May provide an improved preview of the data
- 18. Decide if fixed Y-axis limits will be used in the preview
 - Recommend using Min: -5% to Max: 105%

Experiment Setup - C:\My Documents\Omnic\param
Collect Bench Quality Advanced Diagnostic
Estimated time for this collection: 00:00:23
No. of scans: 16
Resolution: 4.
Data spacing: 1.929 cm-1
Final format: Absorbance 🔹
Correction: None
Automatic atmospheric suppression
✓ Preview data collection
Use transmittance data during preview
Use fixed Y-axis limits in collect window
Min: 0.00 Max: 2.00
Experiment title:
Smart OMNI-Transmission Accessory
Help Open Save Save A

VI. Initiate Software – 5/10

- 19. Select **Bench** tab
- 20. Confirm that the following are correct:
 - Source = IR
 - Accessory = OMNI-Transmission
 - Window = KBr
- 21. Select desired *Max* and *Min* range limit for your scans
 - Recommend using *Recommended range*
- 22. Select the Gain parameter
 - Electronically amplifies signal recommend *Autogain*
 - DO NOT set to Autogain if performing quantitative analysis
- 23. Select the desired Aperture
 - *High resolution* used with resolution at 2 or less for better stability and accuracy

Bench

Collect

- Medium resolution recommended with resolution 4 for better Signal/Noise
- 24. Confirm the *Screen wheel* is set to *Open*

Parameter	Value	
Sample compartment	Main	•
Detector	DTGS KBr	•
Beamsplitter	KBr	Ŧ
Source	IR	•
Accessory	OMNI-Transmission	•
Window	KBr	•
Recommended range	4000 400	
Max range limit	4000	
Min range limit	400	
Gain:1	Autogain	•
Optical velocity	0.4747	•
Aperture	Medium resolution	•
Sample shuttle		
Screen wheel	Open	•

Quality Advanced Diagnostic Configure

VI. Initiate Software – 6/10

25. Select Quality tab

Collect Bench Quality Advanced Diagnostic Configure

26. Determine if you want any spectral quality characteristics to be checked during

your scans Select view: Spectrum O Parameter O Background O Interferogram O All

- **Spectrum** checks quality of the spectrum scan
- **Parameter** checks the scan parameters
- **Background** checks the quality of the background scan ٠
- **Interferogram** checks the raw interferogram signal
- All checks all the above characteristics

27. If you choose to check *Spectrum*...

- **Peaks present?** checks for peaks and if sample is positioned correctly, recommend **ON** at **50%**
- Totally absorbing peaks checks for absorbing peaks, recommend ON at 50%
- *Fringes or channeling* checks for back reflection inside sample, recommend *ON* at 50%
- Derivative peaks checks for derivative-shaped peaks, recommend NO ٠
- Baseline error checks for baseline problems, recommend ON at 50%
- **CO**, *levels* checks for CO₂ absorption, recommend **ON** at **50%**
- H_2O levels checks for H_2O absorption, recommend ON at 50%

VI. Initiate Software – 7/10

28. If you chose to check *Parameters*...

- Spectral range checks if spectral range is consistent for the hardware, recommend ON
- Apodization correct checks apodization type is appropriate, recommend ON
- Resolution checks if resolution is appropriate for the experiment, recommend ON

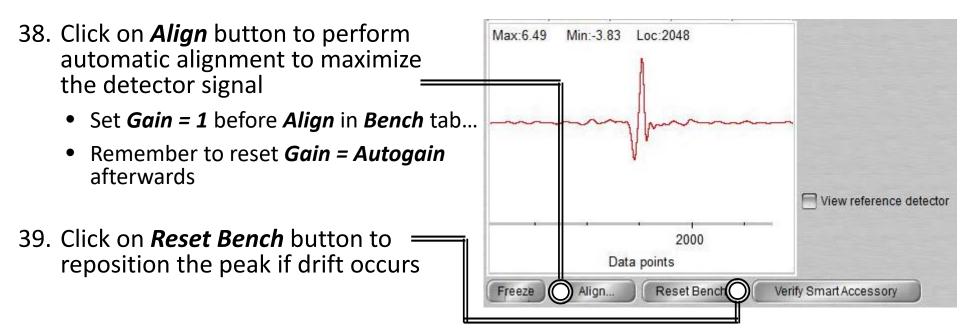
29. If you chose to check *Background*...

- **Background correct for accessory** checks background spectrum, recommend **ON** at **50%**
- Contamination peaks checks for contaminants, recommend ON at 50%
- **Detector icing** checks signs of detector icing, recommend **NO**
- **CO**₂ *levels* checks for CO₂ absorption, recommend **ON** at **50%**
- *H*₂*O levels* checks for H₂O absorption, recommend *ON* at *50%*
- 30. If you chose to check *Interferogram*...
 - *Peak amplitude within range* checks if amplitude is sufficient, recommend *ON*
 - Interferogram minimum = 0.20 and Interferogram maximum = 9.80
 - Minimum peak above noise checks if peak signal is above noise level, recommend ON
 - Peak Minimum = 10

VI. Initiate Software – 8/10

Collect Bench Quality Advanced

- 31. Select Advanced tab
- 32. Confirm *Zero filling* is set to *None*
- 33. Confirm Apodization is set to Happ-Genzel
- 34. Confirm *Phase correction* is set to *Mertz*
- 35. Confirm that the following are checked:
 - Set sample spacing based on spectral range
 - Set filters based on velocity


	Zero filling:	None	-
	Apodization:	Happ-Genzel	-
F	Phase correction:	Mertz	-
V Set s	sample spacing ba	ased on spectral ra	ange
	Sample spacing:	1.0	-
Z Set f	ilters based on vel	locity	
	Low pass filter:	11000	
	High pass filter:	20	
Sing	le-sided interferog	Iram	
Res	et bench at start of	collection	
Star	collection at exter	nal trigger	

Diagnostic Configure

VI. Initiate Software – 9/10

36. Select *Diagnostic* tab

- 37. Click on indicators to check spectrometer components
 - If the values are within the Acceptable Range, they will appear as a
 - If any values show 🔀 , contact the Lab Manager immediately!

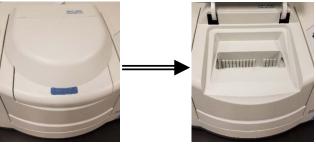
Collect Bench Quality Advanced Diagnostic Configure

-Q-

VI. Initiate Software – 10/10

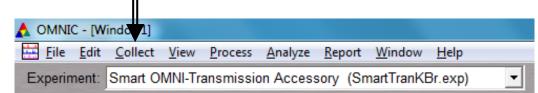
40. Select *Configure* tab

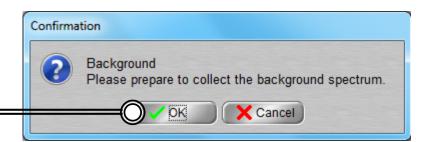
Collect Bench Quality Advanced Diagnostic Configure


- 41. Confirm *Inactivity Rest mode* is checked
 - Confirm *Hours of inactivity* is set to "1" hour
- 42. Confirm *Daily Rest mode* is not checked
- 43. Click "Save" then "OK"

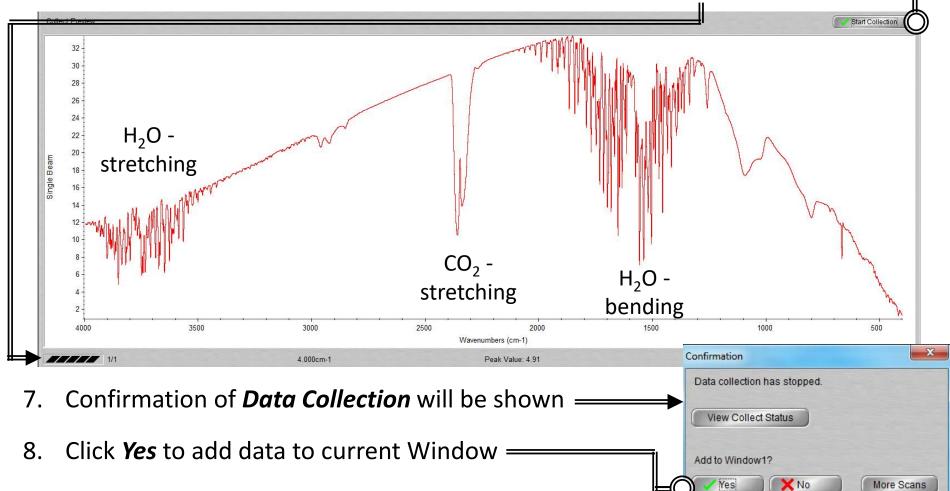
Hours of inactivity: 1 Daily Rest mode Exit Rest mode: 5:30 AM Start Rest mode: 6:00 PM Rest days: Su Mo Tu We Th Fr Sa	Hours of inactivity: 1 Daily Rest mode Exit Rest mode: 5:30 AM Start Rest mode: 6:00 PM Rest days: Su Mo Tu We Th Fr Sa ✓	Source Rest Mode	
Daily Rest mode Exit Rest mode: 5:30 AM Start Rest mode: 6:00 PM Rest days:	Daily Rest mode Exit Rest mode: 5:30 AM Start Rest mode: 6:00 PM Rest days: Su Mo Tu We Th Fr Sa ✓	V Inactivity Rest mode	
Exit Rest mode: 5:30 AM Start Rest mode: 6:00 PM Rest days:	Exit Rest mode: 5:30 AM Start Rest mode: 6:00 PM Rest days: Su Mo Tu We Th Fr Sa	Hours of inactivity: 1	
Start Rest mode: 6:00 PM Rest days:	Start Rest mode: 6:00 PM Rest days: Su Mo Tu We Th Fr Sa V IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	📄 Daily Rest mode	
Rest days:	Rest days: Su Mo Tu We Th Fr Sa	Exit Rest mode: 5:30 AM	
	Su Mo Tu We Th Fr Sa	Start Rest mode: 6:00 PM	
		Su Mo Tu We Th Fr Sa	
lelp Open Save 🔘 Save As OK 🔘 Can			
Ielp Open Save Save As OK Can			

VII. Collect Background – 1/2


- Open the Chamber Cover 1.
- 2. Choose one of the following:
 - Empty chamber
 - Collar Holder and a KBr sample •
 - Pellet Holder and a KBr sample • *Insert Holders in *Notch*

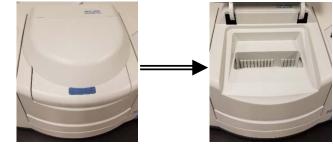


3. Select *Collect -> Collect Background* =

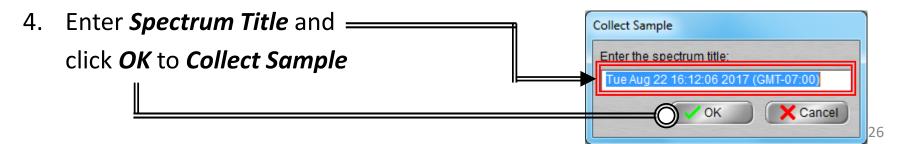


Confirm to collect background 4. by clicking **OK**

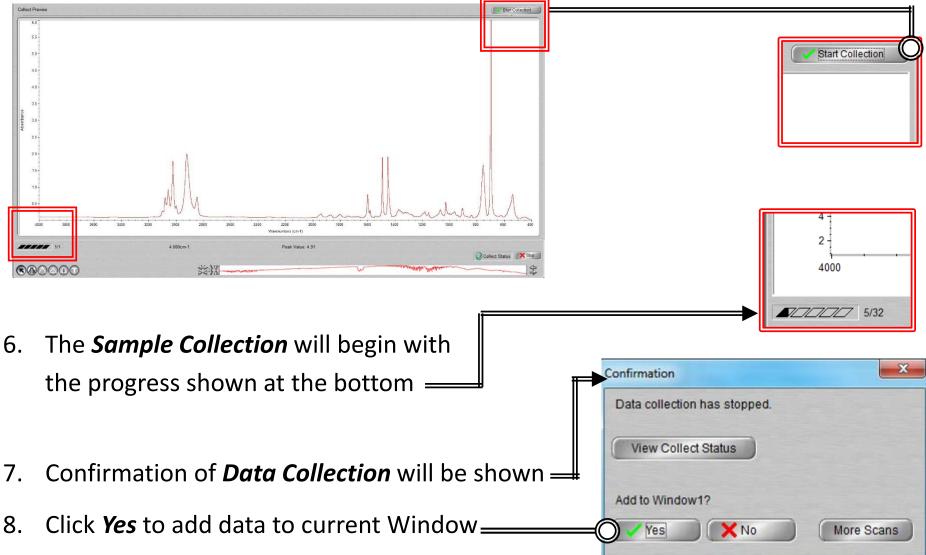
VII. Collect Background – 2/2


- 5. Preview **Background Collection** then click **Start Collection** to begin
- 6. The *Background Collection* will begin with the progress shown at the bottom

VIII. Collect Sample – 1/2

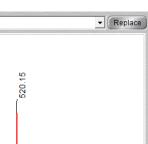

1. Open the *Chamber Cover*

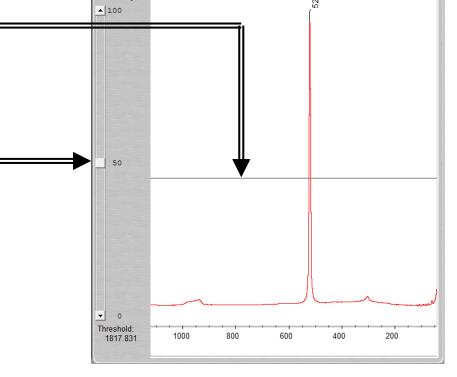
- 2. Insert your sample into Chamber via:
 - Collar Holder
 - Pellet Holder
 *Insert Holders in Notch
- 3. Select *Collect -> Collect Sample*



VIII. Collect Sample – 2/2

IX. Saving Data – 1/1


- Specific spectra can be selected using the S selection tool at the bottom of window and clicking on it or selecting window and clicking on it or selecting window and clicking on it or selecting
- 2. Multiple spectra can be selected/deselected by holding down the *Ctrl* key and clicking spectra
- Click *File -> Save* to save a spectrum (e.g. default is SPA) using the current filename
- Click *File -> Save As* to save a spectrum into another file type (e.g. CSV or TIFF)
- 5. Click *File -> Save Group* to save more than one spectrum as a group in one file having file extension .SPG to open later

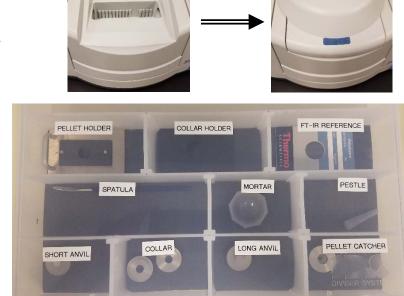

X. Peak Identification – 1/1

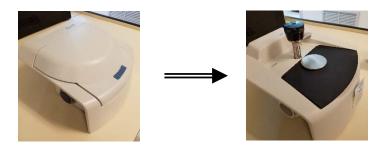
1. Click on "*Find Pks*" button at the top _____

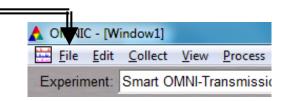
- Click the spectrum window to adjust the *Threshold* position on where peaks are to be considered ______
- 3. Adjust the *Sensitivity* button to separate peaks from noise _____

Find Pks

Clipboard

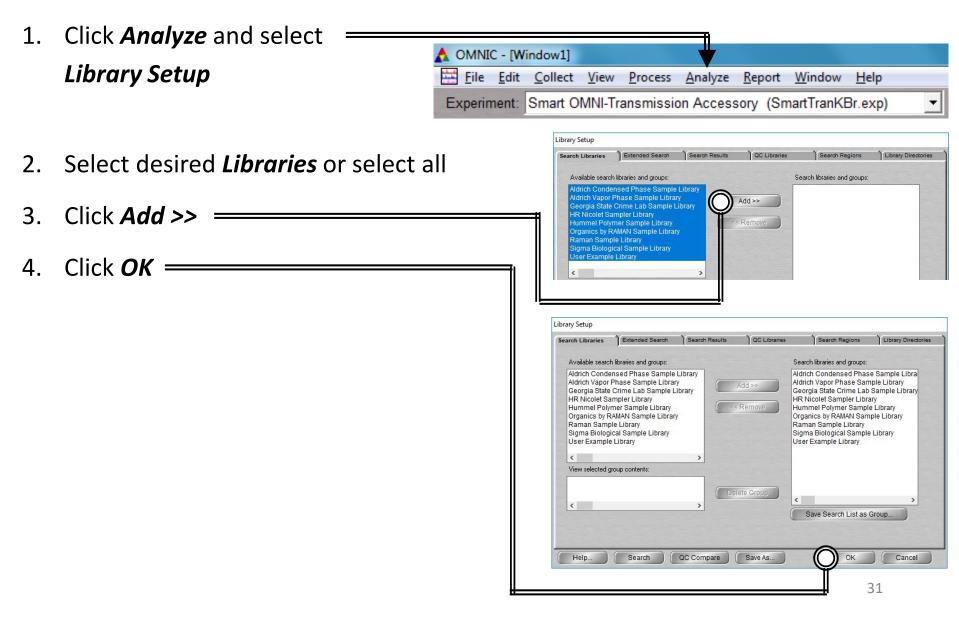

Help. Print


Y-Axis


Sensitivity

XI. Cleanup - 1/1

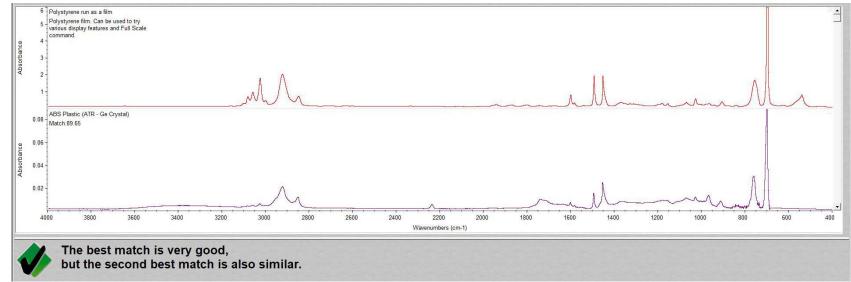
- Remove Sample Holders from the Chamber 1.
- Close the **Chamber Cover** 2.
- 3. Clean up **Sample Holders** and any tools used and return back to storage box
- Remove the *Smart Transmission Accessory* 4. and replace back with *Smart ATR Accessory* (see V. Smart Transmission Accessory)
- Click on *File -> Exit* to shut down the software = 5.
- Log off of your ENGR account 6.



XII. Library Search – 1/3

XII. Library Search – 2/3

5. Select the desired spectra you wish to search for a library match


- 6. Click Analyze and select Search... or click Search icon
 - ▲ OMNIC [Window1]

 ➡ File Edit Collect View Process Analyze Report Window Help

 Experiment: Smart OMNI-Transmission Accessory (SmartTranKBr.exp)
 - 7. Select desired *Libraries* or select all

XI. Library Search – 3/3

8. The top matches will be shown (below) your acquired spectra (top)

9. Click View Match List and select either Overlay or Stack view

10. If a Match does not result, you will have to find matching spectra online instead