Nikon Training Notebook

Lab Manager: Dr. Perry Cheung
MSE Fee-For-Service Facility
Materials Science and Engineering
University of California, Riverside

March 13, 2019 (rev. 3.0)
Before you begin...

- Complete the required safety training modules on UC Learning
 - Laboratory Safety Orientation (Fundamentals) 2013
 - Hazardous Waste Management
 - Compressed Gas Safety
- Submit a copy of your Training Transcript to Lab Manager
- Review the MSE Policies and Regulations
- Fill out the MSE 150, 250, 309 FAU Authorization Form with PI signature
- Provide your ENGR username to Lab Manager to set up Faces account
- Arrange a time for training with Lab Manager
- Schedule your reservation on Faces for your training
Nikon Microscope Operation

I. Microscope Layout
II. Startup
III. EPI: Bright Field
IV. EPI: Dark Field
V. EPI: Polarization
VI. EPI: Differential Interference Contrast (DIC)
VII. DIA: Bright Field
VIII. Image Capture
IX. Cleanup
X. ImageJ
I. Microscope Layout – 1/4

- Camera ON/OFF Switch
- Camera Mode Selector: M (default)
- Binocular Eyepiece
I. Microscope Layout – 2/4
I. Microscope Layout – 3/4

- Optical Path Selector Lever
- Bright field/Dark field Selector Lever
- Analyzer Plate
- Polarizer Slider
- EPI Field Diaphragm Stop
- EPI Aperture Diaphragm Stop
I. Microscope Layout – 4/4

- Filter Selector
- Switches
- DIA Field
- Diaphragm Control
- Stage Movement
- Coarse Focus Stopper
- DIC Prism Plate
- DIA Condenser
- Aperture
- Focus Knob
- Tighten
- DIA Field Diaphragm Control
- Filter Selector Switches
II. Startup – 1/5

1. Sign-in to the computer with your *ENGR username* and *PW*

2. Double-click on *EOS Utility* icon

3. The EOS Utility Launcher may show that the camera is not connected to the computer

4. Toggle Camera *ON/OFF* switch to connect it to the computer – keep in *ON* position

5. Click on *Camera settings/Remote shooting*
II. Startup – 2/5

6. Confirm the following Camera Settings are set:
 Camera Software (right click to change)
 M = Manual
 1/50 = Shutter Speed
 100 = ISO
 Tungsten = Brightness

7. Click on Live View shoot

8. Remote Live View window will appear
II. Startup – 3/5

9. Rotate the *Lamp Brightness Knob* until the light indicator goes from *orange (OFF)* to *green (ON)*

10. If light is missing, turn on *Lamp Power Switch* on back

11. For *Camera View*: Pull lever completely out

For *Binocular Eyepiece*: Push lever completely in
II. Startup – 4/5

12. Lower stage first by turning **Coarse Focus** knob **TOWARD** you

13. Place sample on microscope stage

14. Rotate **Nosepiece** and start with the **10X magnification** first

15. Pull out **Analyzer, Polarizer** and **DIC Prism** if inserted
II. Startup – 5/5

10. Identify which microscope mode you wish to use:

Episcopic Illumination (☀️)

III. Bright field IV. Dark field V. Polarization

VI. Differential Interference Contrast (DIC)

Diascopic Illumination(☀️)

VII. Bright field
III. EPI: Bright Field – 1/3

1. Press the *EPI/DIA* selector and set to *EPI* 🌞

2. Push *Bright/Dark Field* selector lever to fully in *BF* position

3. Adjust the brightness with the *Brightness Control* as necessary

4. Focus on specimen by adjusting the *Coarse/Fine Focus* knobs
III. EPI: Bright Field – 2/3

5. Select if **NCB filter** (balances color) is desired:

6. Adjust the **F. STOP** (field diaphragm) by sliding levers up and down until **Image of Field Diaphragm** circumscribes the **Field of View**
III. EPI: Bright Field – 3/3

7. Adjust the **A. STOP** (aperture diaphragm) by sliding levers up and down to adjust depth of field

8. For each objective, recommended **A. STOP** position (top of lever) is shown on markings

9. Switch to higher magnification objectives if desired by rotating nosepiece

10. Repeat steps 3-9 until desired magnification and image quality is obtained

11. Go to **Step VIII. Image Capture** when ready to acquire image
IV. EPI: Dark Field – 1/2

1. Press the **EPI/DIA** selector and set to **EPI**

2. Pull **Bright/Dark Field** selector lever to fully out **DF** position

3. Adjust the brightness with the **Brightness Control** as necessary

4. Focus on specimen by adjusting the **Coarse/Fine Focus** knobs
IV. EPI: Dark Field – 2/2

5. The **F. STOP** (field diaphragm) and **A. STOP** (aperture diaphragm) are automatically 100% open

 Levers will have **NO** affect

6. Switch to higher magnification objectives if desired by rotating nosepiece

7. Repeat steps 3-6 until desired magnification and image quality is obtained

8. Go to **Step VIII. Image Capture** when ready to acquire image
V. EPI: Polarization – 1/2

1. Press the \textit{EPI/DIA} selector and set to \textit{EPI}

2. Adjust \textit{Bright/Dark Field} selector lever to desired

5. Push the \textit{Analyzer Plate} in

6. Push the \textit{Polarizer Slider} in

7. Rotate the polarizer to adjust the polarization from lateral to vertical

8. Select \textit{NCB filter} (balances color) if desired
9. Adjust the brightness with the *Brightness Control*

10. Adjust the **F. STOP** (field diaphragm) and **A. STOP** (aperture diaphragm) by sliding levers up and down from 100% open to 0% open

 Note: **F. STOP** and **A. STOP** levers will not work if in **DF** mode

11. Focus on specimen by adjusting the **Coarse/Fine Focus** knobs

12. Switch to higher magnification objectives if desired by rotating nosepiece

13. Repeat steps 7-12 until desired magnification and image quality is obtained

14. Go to *Step VIII. Image Capture* when ready to acquire image
1. Press the **EPI/DIA** selector and set to **EPI**

2. Adjust **Bright/Dark Field** selector lever to desired

5. Push the **Analyzer Plate** in

6. Push the **Polarizer Slider** in

7. Rotate the polarizer to adjust the polarization from lateral to vertical

8. Push the **DIC Prism** in and set to **Position A**

9. Rotate small knob to adjust contrast and color
VI. EPI: Differential Interference Contrast – 2/2

10. Select **NCB filter** (balances color) if desired

11. Adjust the brightness with the **Brightness Control**

12. Adjust the **F. STOP** (field diaphragm) and **A. STOP** (aperture diaphragm) by sliding levers up and down from 100% open to 0% open

Note: **F. STOP** and **A. STOP** levers will not work if in **DF** mode

13. Focus on specimen by adjusting the **Coarse/Fine Focus** knobs

14. Switch to higher magnification objectives if desired by rotating nosepiece

15. Repeat steps 7-14 until desired magnification and image quality is obtained

16. Go to **Step VIII. Image Capture** when ready to acquire image
VII. DIA: Bright Field – 1/2

1. Press the **EPI/DIA** selector and set to **DIA** 🌞

2. Push **Bright/Dark Field** selector lever to fully in **BF** position

3. Select **NCB filter** (balances color) if desired

4. Adjust the brightness with the **Brightness Control**

5. Adjust the **Field Diaphragm Control** to fully closed

6. Adjust the **Condenser Height** until the field diaphragm is focused
VII. DIA: Bright Field – 2/2

7. Center the field diaphragm by adjusting Centering Screws

8. Open the Field Diaphragm Control until field diaphragm circumscribes the field of view

9. Focus on specimen by adjusting the Coarse/Fine Focus knobs

10. Adjust the Condenser Aperture to match Numerical Aperture for each objective:

 \[
 \begin{align*}
 10X &= 0.3 \\
 20X &= 0.45 \\
 50X &= 0.8 \\
 100X &= 0.9
 \end{align*}
 \]

10. Switch to higher magnification objectives if desired by rotating nosepiece

7. Repeat steps 3-11 until desired magnification and image quality is obtained

8. Go to Step VIII. Image Capture when ready to acquire image
1. Click on the **Folder** icon and select desired folder to store saved pictures in

2. Recommend creating your own personal folder with sub-folders for each sample to help distinguish among them later

3. It is important to record the objective used for **EACH** image taken (necessary for scale)

4. Review **Camera Settings** before acquiring image

5. Click on the **Shutter Button** to acquire your image
IX. Cleanup – 1/1

1. Lower the stage away from the objectives by rotating the *Coarse Focus* knob **TOWARD** you

2. Rotate nosepiece and place the 10x objective into position

3. Turn off the *Lamp Power Switch* at the back of the microscope

4. Turn off the control software

5. Sign-off from your account

6. Clean up and dispose of any consumables used and return any tools back to its respective containers or bins

7. Confirm that the microscope is turned **OFF** again (**NO LIGHT!**), then place cover over microscope
1. Double-click on **ImageJ** icon

2. Click **File > Open**

3. Locate the **Scale Bar Images** folder

4. Select the **Magnification** of the image you wish to measure (e.g. 100X) and **Open**

5. Click the **Segment Tool** and select **Straight Line**

6. Draw a line that contains the maximum number of tick marks

 Note: It matters where you start and end the line!

7. Count the number of tick marks contained (e.g. 15)

8. Each division is 0.01 mm (or 10 µm)
9. Click **Analyze > Set Scale**

10. Enter the **Known Distance** (e.g. 150 µm) based on the number of tick marks and each division = 0.01 mm (or 10 µm)

11. Enter the **Unit of Length** to desired unit (e.g. mm)

12. Check **Global** to set scale for all images

13. Confirm your scale by drawing a new **Straight Line**

14. Click **Analyze > Measure** and check value

 If incorrect, repeat steps 5 – 13

15. Click **File > Open** and select your image(s) of interest

16. Draw **Straight Lines** and click **Analyze > Measure**

17. Repeat steps 4 – 16 for other **Magnifications**
9. Click **Analyze > Tools > Scale Bar**

10. Enter **Width in um** (e.g. 50 µm) based on the length of scale bar desired

11. Enter **Height in pixels** for desired scale bar thickness

12. Enter **Font size** for desired text size

13. Identify **Color** of the scale bar

14. Identify **Background** color (if desired)

15. Identify **Location** where **Scale Bar** to be placed